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ABSTRACT
This paper proposes VISTURE, a system for generating a robot’s
gesture and speech by using video as input. VISTURE assumes a
situation in which a robot conveys what it saw with a camera to
a person who was absent. The value of this paper is that we have
performed a case study to investigate the expressions that Japanese
people use to describe video scenes, and used the results to build
VISTURE. In particular, we found classi�cation of expressions de-
picting the video scenes throughout the case study: Foreground
information that is the relevant event of the scene and Background
one that is not the main point of the description giving the entire
scene. Foreground and Background are referred in combination.
VISTURE employs the classi�cation to generate human-like expres-
sions. Moreover, we designed the method to determine Foreground
and Background, and it can generate multiple combinations of
expressions. We investigated the people’s impression of a robot
performing the gestures and speech generated by VISTURE to eval-
uate the quality of those gestures and speech. The results showed
that the robot was perceived as more likable and capable when it
performed gestures.

CCS CONCEPTS
• Human-centered computing! Human computer interac-
tion (HCI).

KEYWORDS
Human-robot interaction, Gesture generation, Speech generation

Figure 1: The human on the right is imaging the situation
that several people are walking and running near a streetcar.
If he focuses on the crowd (green circle), he may say “It was
very crowded.” If he focuses on the streetcar (yellow circle),
he may say “I saw a streetcar.”

1 INTRODUCTION
Humans commonly communicate something they have seen to
people in multimodal ways including speech, gaze, and gestures.
In this paper, we focus on a robot which uses video acquired from
its own camera and conveys what it saw in a multimodal way.

There are many previous works that use gestures to convey what
it sees. ([12, 19]). Nihei et al. proposed amethod to generate gestures
that represent objects’ shape by using images as input [19]. For text
generation using video, there is video captioning ([7, 10, 15, 26]).
Donahue et al. proposed generating captions that express the input
videos by using long short-term memory (LSTM) [7].

However, previous works do not take into account information
selection. When humans conveys what they saw to someone who
did not see, they are inherently capable of selecting information. For
example, in a scene where a streetcar is running through a crowd, as
illustrated in Figure 1, whether to focus on the crowd or the streetcar,
or whether to focus on other aspects of the scene, will depend on
the person and the situation. In particular, if the place is famous
for being always crowded, humans would not mention the crowds,
but if it is not, humans would mention the crowds. This needs to
be taken into account when generating robot representations.
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In this study, we consider a system that selects information and
generates gestures and speech with reference to human represen-
tations, assuming a situation in which a robot conveys what it
saw to someone who did not see it. We performed a case study
to investigate the expressions that people use to describe video to
someone who don’t see it, and used the results to build VISTURE.
VISTURE is a system for generating a robot’s gesture and speech by
using video as input, assuming a situation in which a robot conveys
what it saw with a camera to a person who was absent. VISTURE
can make human-like expressions inspired by humans’ expressions.
In particular, we found classi�cation of expressions depicting the
video scenes throughout the case study: Foreground information
that is the relevant event of the scene and Background one that
is not the main point of the description giving the entire scene
(See Table 2 for details). Foreground and Background are referred
in combination. Moreover, we designed the method to determine
objects to be mentioned as Foreground and Background, and it can
generate multiple combinations of expressions. VISTURE computes
features based on the motions of objects in the video and then
decides which objects to represent.

The rest of this paper is organized as follows. Section 2 introduces
related research. Section 3 describes the target system and the data
collection, and Section4 explains the details of VISTURE. Section 5
details the experiments, and Section 6 presents the results of the
experiments. Section 7 discusses the results and Section 8 concludes
the paper.

2 RELATEDWORK
2.1 Gestures Explaining Scenes
Gestures are important in communication ([3, 5, 11, 13, 20, 23]).
Cabibihan et al. showed that humans can understand spatial loca-
tions by using ambiguous explanations combined with pointing
gestures, as well as by using clear explanations [5]. Dijk et al. found
that the performance of gestures related to the speech content helps
humans remember the verbs corresponding to the gestures [23].

Gestures are the one of the e�ective methods of explaining
scenes, and many works conduct on this topic. There are several
approaches generating gestures to explaining scenes ([12, 19]). Ni-
hei et al. prepared seven types of gestures that express shapes of
objects and developed a system that decides the appropriate gesture
to represent the shape of an object in an input image [19]. Kadono
et al. proposed the system which receives texts as input, checks the
pre-prepared dictionary of gestures for each noun obtained from
morphological analysis, and performs one of the three pre-prepared
gestures if the noun is de�ned in the dictionary [12].

2.2 Texts Explaining Scenes
Text is also the one of the e�ective methods of explaining scenes
[1, 21, 27, 28]. Image captioning is the task of generating text that de-
scribes the content of an image. Selvaraju et al. proposed Gradient-
weighted Class Activation Mapping (Grad-CAM) that can grasp
each neuron’s importance for the decision of interest [21]. Video
captioning is the task of generating text that describes the content of
a video. Previous research on video captioning uses LSTM or trans-
former [7, 10, 15, 26]. Yan et al. proposed the STAT video caption
framework, which uses the spatial-temporal attention mechanism

(STAT) to exploit the temporal and spatial structure of video [26].
Man et al. proposed a scenario-aware recurrent transformer (SART)
that uses a recurrent transformer and includes scenario understand-
ing module [15]. Focusing on the shared memory that a robot and
a user acquire during the same experience, Matsumoto et al. devel-
oped a computational model of memory recall of visited places, and
a robot which responds to a user using the model [17].

2.3 Problem Setting
Previous works do not consider how to select information to convey
what it sees to someone who did not see. Humans inherently select
information and the representations should be di�erent depending
on the person or the situation. In this study, we performed a case
study to investigate humans’ expressions that conveys what they
saw to someone who didn’t see it. And, based on the �ndings given
by the case study, we designed the criteria (see Section 4.3) of select-
ing information from the input and created a system that generates
gestures and speech from the information selected according to the
criteria.

3 CASE STUDY
3.1 Overview
People commonly communicate something they have seen to people
who didn’t see. Hence, we aim to build a system that enables a robot
to communicate a scenario that it saw to people who did not see
that scenario. For a system to generate gestures and speech based
on an input video, it must have a function to decide what to talk
about in the video. We thus performed a case study to investigate
the expressions that Japanese people use to describe video, with
the goal of �nding classi�cation for judging what they talk about.

3.2 Procedure
We asked experimental participants to watch videos and then ex-
plain in one sentence how they would describe each video to some-
one who had never seen it. The case study was conducted through
a Japanese crowdsourcing platform with 30 participants. (20 male, 7
female and 3 undisclosed; age 30–55 years old), who each watched
10 videos. Each video was 10 seconds long and was randomly se-
lected from the video description dataset VATEX [25]. VATEX uses
video from Kinetics-600 [6] validation and holdout test sets, and
each video has 10 English and 10 Chinese captions. The videos focus
on human behavior and include scenes such as playing musical
instruments and shaking hands. Expressions for the same thing
may change depending on the culture and language. Therefore,
translations of these captions could not be used, and descriptions
were collected in Japanese.

3.3 Results and Analysis
We collected 300 descriptions in total; Table 1 gives examples from
two videos. We analyzed the descriptions to investigate the tenden-
cies in how the participants described the videos. First, we divided
the collected descriptions into clauses and extracted the subjects
and predicates. Next, we classi�ed the clauses into two groups:
those with a relation to the subject and predicate (main idea), and
those with no relation. We judged these relations by whether or
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Table 1: Examples of collected descriptions

Video Descriptions (translated from Japanese)

A man kicks another man who is holding
crutches with both arms while smoking
a cigarette in his mouth.

https://youtu.be/
i2F6HrZKo34[16]

A man standing on crutches is suddenly
kicked by another man.

A couple are dancing salsa in a room.

https://youtu.be/
qcP1mb1IjjI[9]

A man and a woman are dancing
passionately in a room somewhere.

Table 2: De�nitions for determining what to talk about

Object to
talk about De�nition

Event An object whose motion has changed from
its initial state.

Foreground
An element that is the main idea of
the description: either an Event, or something
that is not an Event but is moving.

Background An element that is not the main idea
of the description and gives the entire scene.

not the subject and predicate were a�ected when the clause was
deleted. Finally, we examined the tendencies of the subjects and
predicates in the descriptions of each video.

As a result, we found three tendencies. First, in about 89% of
the descriptions for videos with behavior changes from the initial
states, the main ideas in the descriptions involved changes, such
as “things fell” or “things stopped.” Second, when there was no
change of behavior, the main ideas of about 93% of the descriptions
tended to involve motions, such as “dancing” or “moving.” Third,
about 32% of the descriptions express elements that had little to do
with the main ideas in descriptions. These references to extraneous
elements were seemingly intended to make it easier for the person
receiving the explanation to picture the scene. From this analysis,
we developed the de�nitions listed in Table 2 and used them to
guide our system in determining what to talk about in a video
and generating utterances accordingly. We de�ned Event as an
element whose state has changed from its initial state. We de�ned
Foreground as an element which is the main idea of the description.
It is an Event, or something that is not an Event but is moving. We
de�ned Background as an element which is not the main idea of the
description, but conveys an image of the entire scene. Foreground
and Background are referred in combination.

Figure 2: System con�guration.

4 VISTURE: SYSTEM FOR SPEECH AND
GESTURE GENERATION BASED ON VIDEO

4.1 System Structure
In this paper, we build VISTURE (VIdeo-based Speech and ges-
TURE), a gesture and speech generation system for robots that is
based on video input. From an input video, VISTURE generates
multiple candidate objects to talk about, ranks the candidates, and
generates a gesture and utterance that express the chosen object’s
motion. VISTURE uses the de�nitions in Table 2, from the results of
our case study, to determine the object to talk about and to generate
speech. The system con�guration is shown in Figure 2. VISTURE is
composed of four functions: a video feature extraction function, an
information selection function, and a behavior generation function.
When a video is inputted, VISTURE outputs the robot’s gesture and
speech.

4.2 Video Feature Extraction Function
This function gets the classes of all the objects in the input video
and their coordinates in each frame. For this paper, we used Yolov5
+ Deep Sort with PyTorch [4] for object detection and tracking.
The classes of the detected objects were based on Microsoft COCO
dataset [14].

4.3 Information Selection Function
This function determines the object to talk about by using the
de�nitions in Table 2. Speci�cally, VISTURE determines the rank-
ing of Foreground and Background candidates to talk about. First,
the information selection function receives a set of the detected
objects, >8 , 8 = 0, . . . ,# , from the video feature extraction func-
tion as input. Then, it uses the coordinates of the detected ob-
jects to calculate E8 9 how well they match each criterion 2 9 , 9 =
5 4;;, . . . , <>E8=65 0BC, . . . , <>E8=6B;>F , . . . , 148=6;0A64 via a func-
tion ⇠�!⇠*!�)⇢_"�)⇠��#⌧_2 9 :

E8 9 = ⇠�!⇠*!�)⇢_"�)⇠��#⌧_2 9 (>8 ) (1)
The criteria are listed in Table 3. Based on the results in Section

3, we devised these criteria that could be computed from the co-
ordinates of the recognized objects. For Event, there may be no
applicable object, in which case Event is not taken into account. For
each criterion, the function normalizes the degree to which each
object �ts the criterion, with a value of 1 for the object that �ts
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Table 3: Criteria for the object to talk about

Classi�cation Criterion

Foreground Event - fell
- stopped
- started

Object State - moving fast
- moving long distance
- moving from outside the frame
to inside

Background - moving slow
- having many objects of
the same class
- being large

the criterion the best and a value of 0 for the object that �ts it the
worst. Then, for each criterion, the di�erence, denoted as B2>A4 9 ,
between the maximum normalized value< 9 and the next highest
normalized value = 9 is calculated:

B2>A4 9 =< 9 � = 9 (2)
The object that best �ts each criterion is chosen as a candidate
to talk about. For example, for the criterion “moving long dis-
tance,” the information selection function calculates each detected
object’s moving distance in relation to its appearance time by
⇠�!⇠*!�)⇢_"�)⇠��#⌧_2<>E8=638BC0=24 (>8 ). It then normal-
izes the moving distance and calculates B2>A4<>E8=6;>=638BC0=24 .
The object with the longest moving distance is mentioned when
the expression is generated based on this criterion.

As described in Section 3, objects that are Foreground candidates
tend to be objects that �t the Event de�nition. Accordingly, if an
object �ts the Event de�nition, it is given priority as a Foreground
candidate, regardless of the B2>A4 values obtained for the non-Event
(Object State) criteria.

As noted in Table 2, the Background is not the main point of the
description. Therefore, to create combinations of the Foreground
and Background candidates from each criterion, after selecting a
Foreground candidate, a Background candidate is selected as an
object that is recognized as belonging to a di�erent class than the
Foreground object. Then, Foreground and Background combina-
tions are created. VISTURE determines that they are suitable for
output in order of the sum of their B2>A4 values:

B2>A4C>C0; = B2>A4�>A46A>D=3 + B2>A4⌫02:6A>D=3 (3)

4.4 Behavior Generation Function
4.4.1 Gesture Generation. From the coordinates of the chosen ob-
ject to talk about, VISTURE generates a gesture for which the
robot’s hand position when viewed from the front corresponds to
the object’s coordinates. VISTURE assumes that the robot has seen
the input video, and that the robot’s hand positions are horizontally
�ipped from the object’s coordinates. In addition, it adjusts the
length of the gesture to match the length of the generated speech,
so that the gesture is not much longer or shorter. To match gesture
timing with that of the speech, if a gesture’s starting point is far

Figure 3: Example of an input video [8] and the robot’s gen-
erated gesture. The yellow circle represents the Foreground
and the light blue circle represents the Background. The ro-
bot uses its right arm to perform a Background gesture and
its left arm to perform a Foreground gesture. The class of
the Background object is “sports ball,” and its criterion is
“moving slow.” The class of the Foreground object is “people,”
and its criterion is “stopped.” The objects’ coordinates and
the robot’s hand position are reversed because VISTURE as-
sumes a situation in which the robot conveys what it saw
and generates the gestures based on the robot’s viewpoint.

from the hand position in an upright state, which is the robot’s
default posture, the robot advances to the start of the gesture.

The robot uses an arm to perform a Foreground gesture. When
VISTURE uses the “moving slow” and “being large” criteria in Table
3 as the Background classi�cation, the robot uses the opposite
arm to describe the Background object, depending on whether the
object’s coordinates are closer to the left or right side of the frame,
and the hand position corresponds to the object’s coordinates. Then,
the robot uses the other arm to describe the Foreground. When
“having many objects of the same class” is the Background criterion,
the robot uses a metaphoric gesture with arms spread (prepared in
advance) as the Background gesture to express a large number of
objects, and it performs another gesture to express the Foreground.
Metaphoric gesture is the one of the classi�cations of gestures by
McNeill, and represent abstract concepts [18]. We determined this
gesture based on McNeill’s classi�cation. When “moving fast” is the
Foreground criterion, VISTURE makes the robot move faster than
when using the other criteria. In addition, for the “moving long
distance” and “moving from outside the frame to inside” criteria,
it makes the working range of the robot’s arm larger than for the
other criteria. We used SciPy [24] to calculate the angle of the
arm joint from the position of the robot’s hand. If we used an
object’s coordinates in all frames to generate a gesture, the gesture
would be staggered; thus, we average the coordinates every 0.4
seconds. Figure 3 gives an example of an input video and the robot’s
generated gesture.

4.4.2 Speech Content Generation. VISTURE generates utterances
based on the criteria used to determine the object to talk about and
the class of the object. For the class names of the Background and
Foreground objects to be talked about, VISTURE combines each
one with a sentence that is randomly selected from candidates for
each criterion that was used in selecting that object. The generated
speech refers to the Background and Foreground. For example,
suppose that the class of the Background object is “car,” and that
the criterion is “moving slow.” Suppose further that class of the
Forground object is “person,” and that the criterion is “stopped.”
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In this case, VISTURE generates a sentence such as “A person
stopped, while there was a car in the background.” Speci�cally, for
the Background object, “There was” would be randomly selected
from the candidates for the criterion “moving slow,” and “a car”
is the class name of the object talked about; thus the resulting
sentence is “There was a car.” As for the Foreground object, “is
stopped” would be randomly selected from the candidates for the
criterion “stopped,” and “a person” is the class name, resulting in
the sentence “A person stopped.” Finally, by connecting these two
sentences in the order of Background and Foreground, VISTURE
generates the sentence “A person stopped, while there was a car in
the background.”

4.5 Robot
For the robot, we used Pepper, which was developed by SoftBank
Robotics [22]. It has two degree of freedoms in its head, six in its
arm, two in its waist, and one in its knee. Pepper is 121 cm tall and
weights 29 kg.

5 EXPERIMENTS
5.1 Conditions
We conducted an experiment with an online questionnaire survey
to investigate the e�ects of gesture expression with VISTURE and
the �ndings from our case study. We compared the following three
conditions in an experiment having a within-subjects design.

Proposed
The robot performed both the gesture and utterance with
the highest ranking among the gestures and utterances gen-
erated by VISTURE.

Speech Only
The robot performed the same speech as under the Proposed
condition but without a gesture.

Baseline
The robot performed a gesture and utterance without refer-
ring to the Background. It talked about the same object as
under the Proposed and Speech Only conditions, and it used
Object State as the selection criterion for the Foreground
object. We used this condition to measure the e�ect of Back-
ground and Event mentions, as found in the case study.

5.2 Procedure
We explained to the participants that the robot would express a
scene that it had actually seen by focusing on the motion in that
scene. Participants watched three videos generated from an input
video for the three experimental conditions, as well as the input
video. The participants �rst watched a video of the robot’s perfor-
mance. They then watched the input video, which was assumed
to be the actual scene viewed by the robot, and they answered a
questionnaire. The sequence of steps from watching the video of
the robot to answering the questionnaire was repeated for each
video under each of the three experimental conditions. We coun-
terbalanced the order of the presented videos.

For the input videos, we randomly selected four from the video
description dataset VATEX. As described in Section 3, VISTURE
uses objects recognized in di�erent classes as the Foreground and

Table 4: Questionnaire 1 (translated from Japanese)

Measure Item Questionnaire content

Gesture Q1 The robot’s gesture was appropriate
for the input video.

Q2 The robot’s gesture was appropriate
for the speech content.

Q3 The robot’s gesture was natural.

Speech Q4 The robot’s speech was appropriate
for the input video.

Q5 The robot’s speech was appropriate
for the gesture.

Q6 The robot’s speech was natural.

Overall
representation Q7 The robot’s explanation was

appropriate for the input video.

Q8 I understood what the robot was
trying to tell me.

Q9 The robot’s explanation was
su�cient for the input video.

Background. Accordingly, we used videos in which more than two
objects appeared and at least two or more classes of objects were rec-
ognized. From these four input videos, VISTURE generated expres-
sions that mentioned the Foreground object, which was determined
according to the Event criteria in all the videos.

5.3 Measurements
We prepared Questionnaire 1, listed in Table 4, to investigate the
participants’ impressions of the robot’s gestures and utterances.
The items on Questionnaire 1 were evaluated on a 7-point Likert
scale, where 1 was the most negative response and 7 was the most
positive. We also used the Godspeed questionnaire [2], which is
a scale to evaluate the perceived impressions of robots from �ve
perspectives: anthropomorphism, animacy, likeability, perceived
intelligence, and perceived safety. We used all of these perspectives
except the perceived safety. The Godspeed questionnaire items
were evaluated on a 5-point Likert scale, where 1 was the most
negative response and 5 was the most positive.

5.4 Expected Results
We expected that the responses for anthropomorphism and like-
ability would be higher under the Proposed and Baseline condi-
tions than under the Speech Only condition, because Salem et al.
found that people perceive a robot speaking with gestures as more
human-like and likeability [20]. Accordingly, wemade the following
prediction:

Prediction 1: As compared to the Speech Only condition, the
robot’s performance under the Proposed and Baseline conditions
will be rated higher on the Godspeed questionnaire.

We also expected that the robot’s likeability would be increased
by taking the Background and Event into account, i.e., under the
Proposed condition. In the case study, the majority of participants
mentioned an Event as Foreground when an Event occurred. This
suggests that inclusion of the Background and Event can more
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Figure 4: Results of Questionnaire 1 for all videos. The error
bars indicate the standard errors.

Table 5: Results of Questionnaire 1 for all videos.

Item � ? [2

Q1 � (1.819, 141.890) = 3.021 0.057 0.04
Q2 � (1.859, 145.009) = 4.167 0.020 0.05
Q3 � (2, 156) = 5.630 0.004 0.07
Q4 � (1.416, 110.417) = 2.214 0.130 0.03
Q5 � (2, 156) = 9.735 0.001 0.11
Q6 � (1.763, 137.513) = 1.338 0.265 0.02
Q7 � (1.526, 118.995) = 0.722 0.453 0.01
Q8 � (1.368, 106.728) = 1.134 0.308 0.01
Q9 � (1.235, 96.359) = 3.849 0.044 0.05

strongly express the characteristics of a video, and we thus made
the following prediction:

Prediction 2: As compared to the Baseline condition, the robot’s
performance under the Proposed condition will be rated higher on
both Questionnaire 1 and the Godspeed questionnaire.

5.5 Participants
Through a Japanese crowdsourcing service, we recruited 20 partici-
pants for each input video, giving a total of 80 participants for four
input videos (51 male, 20 female, 9 undisclosed; age 20–65 years
old). We removed one participant from the analysis as an outlier
because the participant’s response time for the questionnaire was
308 s, whereas the median response time was 664 s.

6 RESULTS
Figure 4 shows the results of Questionnaire 1. We conducted a one-
way repeated-measures ANOVA on the results. What kind of video
was used is not treated as an independent variable. It revealed a
signi�cant e�ect for Q2, Q3, Q5, and Q9 between the conditions. In
contrast, there was no signi�cant e�ect for Q1, Q4, Q6, Q7, or Q8.
Table 5 shows details.

We also conducted multiple comparisons using the Bonferroni
method, which revealed signi�cant di�erences for Q2 between the
Proposed and Speech Only conditions (? = 0.035), and between
the Speech Only and Baseline conditions (? = 0.038). For Q3, we
found a signi�cant di�erence between the Speech Only and Baseline
conditions (? = 0.003). For Q5, there were signi�cant di�erences
between the Proposed and Speech Only conditions (? = 0.005),
and between the Speech Only and Baseline conditions (? < 0.001).
Lastly, there were no signi�cant di�erences for Q9.

Figure 5: Results of the Godspeed questionnaire for all videos.
The error bars indicate the standard errors.

Table 6: Results of the Godspeed questionnaire for all videos.

Item � ? [2

anthropomorphism � (2, 156) = 7.269 0.001 0.09
animacy � (2, 156) = 40.233 0.001 0.34
likeability � (2, 156) = 15.598 0.001 0.17

perceived intelligence � (1.765, 137.640) = 10.409 0.001 0.12

Next, Figure 5 shows the results of the Godspeed questionnaire.
We found a signi�cant e�ect between the conditions for all four
tested perspectives. Table 6 shows details.

For the Godspeed questionnaire, we again conducted multiple
comparisons using the Bonferroni method. We found signi�cant dif-
ferences for anthropomorphism between the Proposed and Speech
Only conditions (? = 0.002), and between the Speech Only and
Baseline conditions (? = 0.008). For animacy, likeability, perceived
intelligence, there were signi�cant di�erences between the Pro-
posed and Speech Only conditions (? < 0.001), and between the
Speech Only and Baseline conditions (? < 0.001).

7 DISCUSSION
7.1 Implications
For all items on the Godspeed questionnaire, we found signi�cant
di�erences between the Proposed and Speech Only conditions, and
between the Speech Only and Baseline conditions. Because the
robot’s performance under the Proposed and Baseline conditions
was rated higher than under the Speech Only condition, Prediction
1 was validated. VISTURE generates gestures that express motion,
and we found that the participants’ impressions of the robot were
enhanced when a gesture expressing motion was performed along
with speech. In other words, it is worthwhile for a robot to perform
gestures that express motion.

On the other hand, we observed no trend for robot expressions
that mimicked human expressions of the Background and Event.
In other words, we could not validate Prediction 2. However, by
examining the trends for the individual videos, we found cases in
which expressions that included the Background and Event were
evaluated better or worse. We describe these �ndings in the next
section.
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Figure 6: Results of Questionnaire 1 for Video 1. The error
bars indicate the standard errors.

7.2 E�ects of Events and Background
Descriptions

Here, we discuss when a representation taking the Event and Back-
ground into account works well, when it does not, and what kind
of representation should be used. The input video a�ected whether
the robot’s performance was evaluated more highly under the Pro-
posed condition or the Baseline condition; hence, we focus on this
di�erence.

For all of the input videos used in the experiment, VISTURE gen-
erated representations in which the Foreground object was obtained
from an Event. Therefore, the di�erence between the Foreground
representations under the Proposed and Baseline conditions was
whether or not the target object to talk about was obtained from
an Event, and whether or not the generated expression took the
Background into account.

For Video 1 of a man throwing a ball, the robot’s performance
was evaluated more positively under the Proposed condition than
under the Baseline condition. By conducting a one-way repeated-
measures ANOVA and multiple comparisons using the Bonferroni
method, we found signi�cant di�erences between the Proposed and
Baseline conditions. Figure 6 shows the results of the multiple com-
parisons test for Questionnaire 1. The test identi�ed the following
results: for Q1, Proposed > Speech Only (? = 0.006) and Proposed
> Baseline (? < 0.001); for Q2, Proposed > Baseline (? = 0.006); for
Q3, Proposed > Baseline (? = 0.044); for Q4, Speech Only > Base-
line (? = 0.035); for Q5, Proposed > Speech Only (? = 0.017) and
Proposed > Baseline (? = 0.011); for Q7, Speech Only > Baseline
(? = 0.028) and Proposed > Baseline (? = 0.027); and for Q9, Speech
Only > Baseline (? = 0.004) and Proposed > Baseline (? = 0.001).
Overall, these results show that the robot’s performance for Video
1 was better evaluated under the Proposed condition than under
the Baseline condition.

Next, Figure 7 shows the results of the multiple comparisons test
for the Godspeed questionnaire. The test identi�ed the following
results: for anthropomorphism, Proposed > Speech Only (? = 0.002)
and Proposed > Baseline (? = 0.010); for animacy, Proposed >
Speech Only (? < 0.001), Speech Only > Baseline (? = 0.001), and
Proposed > Baseline (? < 0.001); for likeability, Proposed > Speech
Only (? = 0.039); and for perceived intelligence, Proposed > Speech
Only (? = 0.009). Overall, these results further indicate that the
performance for Video 1 was better evaluated under the Proposed
condition than under the Baseline condition.

To a human observer, Video 1 appears to show an Event occur-
ring during the video. The intent of mentioning the Background is

Figure 7: Results of the Godspeed questionnaire for Video 1.
The error bars indicate the standard errors.

Figure 8: Results of Questionnaire 1 for Videos 2 and 3. The
error bars indicate the standard errors.

to make the explanation more detailed, and it is thus better to do
so than not to do so. As a result, because there was no discrepancy
between Video 1 and the representation generated by VISTURE,
the robot’s performance was better evaluated under the Proposed
condition, which provided a more detailed explanation than under
the Baseline condition.

In contrast, for Video 2 of boys practicing dribbling and Video
3 of boys riding a scooter, the robot’s performance was evaluated
more positively under the Baseline condition than under the Pro-
posed condition. We again conducted a one-way repeated-measures
ANOVA and multiple comparisons using the Bonferroni method,
and we found signi�cant deferences between the Proposed and
Baseline conditions. Figure 8 shows the results of the multiple com-
parisons test for Questionnaire 1. The test identi�ed the following
results: for Q1, Baseline > Speech Only (? = 0.004) and Baseline >
Proposed (? = 0.011); for Q2, Baseline > Speech Only (? = 0.001)
and Baseline > Proposed (? = 0.010); for Q3, Baseline > Speech
Only (? < 0.001) and Baseline > Proposed (? = 0.049); for Q4, Base-
line > Speech Only (? = 0.001) and Baseline > Proposed (? = 0.003);
for Q5, Baseline > Speech Only (? < 0.001) and Baseline > Pro-
posed (? = 0.002); for Q7, Baseline > Speech Only (? = 0.031) and
Baseline > Proposed (? = 0.036); for Q8, Baseline > Speech Only
(? = 0.023); and for Q9, Baseline > Speech Only (? = 0.007). Overall,
the robot’s performance for Videos 2 and 3 was better evaluated
under the Baseline condition than under the Proposed condition.

Next, Figure 9 shows the results of the multiple comparisons test
for the Godspeed Questionnaire. The test identi�ed the following
results: for animacy, Proposed > Speech Only (? = 0.001) and Base-
line > Speech Only (? < 0.001); for likeability, Proposed > Speech
Only (? = 0.006) and Baseline > Speech Only (? < 0.001); and for
perceived intelligence, Baseline > Speech Only (? < 0.001) and
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Figure 9: Results of the Godspeed questionnaire for Videos 2
and 3. The error bars indicate the standard errors.

Baseline > Proposed (? = 0.013). Overall, these results further con-
�rm that the performance for Videos 2 and 3 was better evaluated
under the Baseline condition than under the Proposed condition.

To a human observer, in contrast to Video 1, Videos 2 and 3
do not appear to show an Event occurring during the video. It
seems that there was a representationmismatch under the Proposed
condition, whereas the mismatch did not occur under the Baseline
condition because the Event was not considered. The main cause of
the representation mismatch seems to be that VISTURE generates
representations by using only coordinate changes. Comparing the
VISTURE output results with the input Videos 2 and 3, we can
observe that there were objects whose coordinates changed very
little in the videos. As a result, the “stopped” criterion for an Event
was used to determine the target object to talk about. However, the
objects were still moving in the actual input videos, though the
coordinate changes were small. For example, Video 2 shows boys
kicking a soccer ball for dribbling practice and trying to go around
a colored cone. Because the boys’ coordinates obtained by the video
feature extraction function changed very little when they tried to
go around the cone, the information selection function decided that
the “stopped” criterion for an Event was satis�ed. Thus, we found
that it is not possible to detect all human actions from coordinate
changes alone.

The robot’s representation taking an Event into account did not
necessarily improve its evaluation by the participants. Expressions
that take an Event into account may be e�ective for objects such as
cars, whose actions are directly related to coordinate changes. How-
ever, humans may perform actions without changing coordinates,
in which case taking an Event into account may result in represen-
tation mismatches. For the case when the target Foreground object
is a human, we should consider either generating a representation
that does not take an Event into account or introducing an action
classi�cation. This knowledge of meta-level rule can also bring use-
ful insights to architectural design when creating models in deep
learning.

7.3 Limitations
We note here that our study has some limitations. The robot’s
gesture generation controls only the hand’s position and the range
of motion of the robot’s arms is limited to two dimensions. It is
because its gestures are generated from the coordinates of objects
in a video, but gestures are normally three-dimensional. It would be
interesting to conduct experiments that focus more on the e�ects of
gestures, such as comparing speech-related gestures with random
gestures. Regarding the limitations of the experimental design, the

results may not be generalizable across cultures, as expressions vary
among di�erent languages and cultures. In addition, the experiment
was conducted with only one type of robot. Because Pepper has a
human-like appearance, di�erent trends may emerge when using
a robot with a simpler appearance. Although the viewpoints of
the input videos should be an important factor because a robot is
intended to describe a view that it has seen, we did not account
for it in this study. Our experimental design limited the possible
types of communication. In the future, we aim to investigate more
interactive settings by using real-world information.

8 CONCLUSION
We have proposed VISTURE, a system that generates robot gestures
and speech by using video as input, assuming a situation in which
a robot conveys what it saw with a camera to a person who was
absent. We have performed a case study to investigate the expres-
sions that Japanese people use to describe video scenes and found
classi�cation: Foreground and Background. VISTURE generates
representations based on changes in the coordinates of objects in
a video, according to the �ndings of a case study. We experimen-
tally evaluated the quality of the gestures and speech generated
by VISTURE and the people’s impression of a robot performing
those gestures and speech. We found that the robot was perceived
as more likeable and capable when it performed gestures. However,
some representations that took an Event and the Background in a
video into account worked well, whereas others did not. This was
because coordinate changes in a video could not always be used
to detect human actions, in which case the generated representa-
tion mentioning an Event did not match the person performing an
action.

ACKNOWLEDGMENTS
This work was supported in part by JST, CREST Grant Number
JPMJCR19A1, Japan and JSPS KAKENHI Grant Number JP20K19897.

REFERENCES
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,

Stephen Gould, and Lei Zhang. 2018. Bottom-Up and Top-Down Attention for
Image Captioning and Visual Question Answering. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 6077–6086. https://doi.org/10.1109/
CVPR.2018.00636

[2] Christoph Bartneck, Elizabeth Croft, and Dana Kulic. 2009. Measurement instru-
ments for the anthropomorphism, animacy, likeability, perceived intelligence,
and perceived safety of robots. International Journal of Social Robotics 1, 1 (2009),
71–81. https://doi.org/10.1007/s12369-008-0001-3

[3] Paul Bremner and Ute Leonards. 2016. Iconic Gestures for Robot Avatars,
Recognition and Integration with Speech. Frontiers in Psychology 7 (2016).
https://doi.org/10.3389/fpsyg.2016.00183

[4] Mikel Broström. 2020. Real-time multi-object tracker using YOLOv5 and deep
sort. https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch.

[5] John-John Cabibihan, Wing-Chee So, Sujin Saj, and Zhengchen Zhang. 2012.
Telerobotic Pointing Gestures Shape Human Spatial Cognition. International
Journal of Social Robotics 4 (April 2012), 263–272. https://doi.org/10.1007/s12369-
012-0148-9

[6] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew
Zisserman. 2018. A Short Note about Kinetics-600. https://doi.org/10.48550/
ARXIV.1808.01340

[7] Je� Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan,
Sergio Guadarrama, Kate Saenko, and Trevor Darrell. 2017. Long-Term Recur-
rent Convolutional Networks for Visual Recognition and Description. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39, 4 (2017), 677–691.
https://doi.org/10.1109/TPAMI.2016.2599174

[8] Drills. 2016. Soccer Coaching Attacking Drill: Warm Up | circular saw. https:
//youtu.be/jDrZ5Rzpn7A Accessed: Jun 18, 2022.

The final authenticated version is available online at: https://doi.org/10.1145/3527188.3561931
This is a preprint of an article published in Proceedings of the 10th International Conference on Human-Agent Interaction.

https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1109/CVPR.2018.00636
https://doi.org/10.1007/s12369-008-0001-3
https://doi.org/10.3389/fpsyg.2016.00183
https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch
https://doi.org/10.1007/s12369-012-0148-9
https://doi.org/10.1007/s12369-012-0148-9
https://doi.org/10.48550/ARXIV.1808.01340
https://doi.org/10.48550/ARXIV.1808.01340
https://doi.org/10.1109/TPAMI.2016.2599174
https://youtu.be/jDrZ5Rzpn7A
https://youtu.be/jDrZ5Rzpn7A


VISTURE: A System for Video-Based Gesture and Speech Generation by Robots HAI ’22, December 5–8, 2022, Christchurch, New Zealand

[9] Martin Fernandez. 2013. Dami y Barby Bailando Salsa. https://youtu.be/
qcP1mb1IjjI Accessed: Jun 18, 2022.

[10] Lianli Gao, Zhao Guo, Hanwang Zhang, Xing Xu, and Heng Tao Shen. 2017.
Video Captioning With Attention-Based LSTM and Semantic Consistency. IEEE
Transactions on Multimedia 19, 9 (2017), 2045–2055. https://doi.org/10.1109/
TMM.2017.2729019

[11] Michita Imai, Tetsuo Ono, and Hiroshi Ishiguro. 2001. Physical relation and
expression: joint attention for human-robot interaction. In Proceedings 10th IEEE
International Workshop on Robot and Human Interactive Communication. ROMAN
2001 (Cat. No.01TH8591). 512–517. https://doi.org/10.1109/ROMAN.2001.981955

[12] Yuki Kadono, Yutaka Takase, and Yukiko I. Nakano. 2016. Generating Iconic Ges-
tures Based on Graphic Data Analysis and Clustering. In The Eleventh ACM/IEEE
International Conference on Human Robot Interaction (Christchurch, New Zealand)
(HRI ’16). IEEE Press, 447–448.

[13] Mitsuhiko Kimoto, Takamasa Iio, Masahiro Shiomi, and Katsunori Shimohara.
2021. Coordinating Entrainment Phenomena: Robot Conversation Strategy
for Object Recognition. Applied Sciences 11, 5 (2021). https://doi.org/10.3390/
app11052358

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision – ECCV 2014, David Fleet, Tomas Pajdla,
Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer International Publishing,
Cham, 740–755.

[15] Xin Man, Deqiang Ouyang, Xiangpeng Li, Jingkuan Song, and Jie Shao. 2022.
Scenario-Aware Recurrent Transformer for Goal-Directed Video Captioning.
ACM Trans. Multimedia Comput. Commun. Appl. 18, 4, Article 104 (mar 2022),
17 pages. https://doi.org/10.1145/3503927

[16] Nicholas Masters. 2011. Guy on crutches gets dropped kicked. https://youtu.be/
i2F6HrZKo34 Accessed: Jun 18, 2022.

[17] Takahiro Matsumoto, Satoru Satake, Takayuki Kanda, Michita Imai, and Norihiro
Hagita. 2012. Do you remember that shop? — Computational model of spatial
memory for shopping companion robots. In 2012 7th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). 447–454.

[18] David McNeill. 1992. Hand and mind : what gestures reveal about thought. Uni-
versity of Chicago Press.

[19] Fumio Nihei, Yukiko Nakano, Ryuichiro Higashinaka, and Ryo Ishii. 2019. De-
termining Iconic Gesture Forms Based on Entity Image Representation. In 2019
International Conference on Multimodal Interaction (Suzhou, China) (ICMI ’19).
Association for Computing Machinery, New York, NY, USA, 419–425. https:
//doi.org/10.1145/3340555.3353736

[20] Maha Salem, Friederike Eyssel, Katharina Rohl�ng, Stefan Kopp, and Frank
Joublin. 2013. To Err is Human(-like): E�ects of Robot Gesture on Perceived
Anthropomorphism and Likability. International Journal of Social Robotics 5
(2013), 313–323.

[21] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. In 2017 IEEE International Con-
ference on Computer Vision (ICCV). 618–626. https://doi.org/10.1109/ICCV.2017.74

[22] SoftBank. 2019. Robot SoftBank. https://www.softbank.jp/en/robot/ Accessed:
Jun 18, 2022.

[23] Elisabeth T Van Dijk, Elena Torta, and Raymond H Cuijpers. 2013. E�ects of eye
contact and iconic gestures on message retention in human-robot interaction.
International Journal of Social Robotics 5, 4 (2013), 491–501. https://doi.org/10.
1007/s12369-013-0214-y

[24] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scienti�c Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[25] Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang Wang, and William Yang
Wang. 2019. VaTeX: A Large-Scale, High-Quality Multilingual Dataset for Video-
and-Language Research. In The IEEE International Conference on Computer Vision
(ICCV).

[26] Chenggang Yan, Yunbin Tu, Xingzheng Wang, Yongbing Zhang, Xinhong Hao,
Yongdong Zhang, and Qionghai Dai. 2020. STAT: Spatial-Temporal Attention
Mechanism for Video Captioning. IEEE Transactions on Multimedia 22, 1 (2020),
229–241. https://doi.org/10.1109/TMM.2019.2924576

[27] Xu Yan, Zhengcong Fei, Zekang Li, Shuhui Wang, Qingming Huang, and Qi
Tian. 2021. Semi-Autoregressive Image Captioning. Association for Computing
Machinery, New York, NY, USA, 2708–2716. https://doi.org/10.1145/3474085.
3475179

[28] Quanzeng You, Hailin Jin, ZhaowenWang, Chen Fang, and Jiebo Luo. 2016. Image
Captioning with Semantic Attention. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 4651–4659. https://doi.org/10.1109/CVPR.2016.
503

The final authenticated version is available online at: https://doi.org/10.1145/3527188.3561931
This is a preprint of an article published in Proceedings of the 10th International Conference on Human-Agent Interaction.

https://youtu.be/qcP1mb1IjjI
https://youtu.be/qcP1mb1IjjI
https://doi.org/10.1109/TMM.2017.2729019
https://doi.org/10.1109/TMM.2017.2729019
https://doi.org/10.1109/ROMAN.2001.981955
https://doi.org/10.3390/app11052358
https://doi.org/10.3390/app11052358
https://doi.org/10.1145/3503927
https://youtu.be/i2F6HrZKo34
https://youtu.be/i2F6HrZKo34
https://doi.org/10.1145/3340555.3353736
https://doi.org/10.1145/3340555.3353736
https://doi.org/10.1109/ICCV.2017.74
https://www.softbank.jp/en/robot/
https://doi.org/10.1007/s12369-013-0214-y
https://doi.org/10.1007/s12369-013-0214-y
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TMM.2019.2924576
https://doi.org/10.1145/3474085.3475179
https://doi.org/10.1145/3474085.3475179
https://doi.org/10.1109/CVPR.2016.503
https://doi.org/10.1109/CVPR.2016.503

	hai2022_FM
	hai22-Stamp
	Abstract
	Abstract
	1 Introduction
	2 Related Work: Social Acceptance and Attitude
	2.1 Measurements

	3 The Furhat Robot
	4 Method
	4.1 Wizard of Oz System
	4.2 Robot Setup
	4.3 Questionnaires
	4.4 Participants
	4.5 Procedure
	4.6 Analysis

	5 Results
	5.1 Participant Comments

	6 Discussion
	6.1 Limitations

	7 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Background
	2.1 Audio versus text social media messages
	2.2 Toxicity and media format
	2.3 Sentiment and media format
	2.4 Topic and media format

	3 Current Study
	4 Materials and Method
	4.1 Dataset
	4.2 Transcription
	4.3 Measures of toxicity, sentiment and topic
	4.4 Analysis

	5 Results
	5.1 Effect of media format on word count
	5.2 Effect of media format on toxicity
	5.3 Effect of media format on sentiment
	5.4 Topics of audio, text and video tweets
	5.5 Effect of media format on topic

	6 Discussion
	6.1 Summary of results
	6.2 Design Implications
	6.3 Implications for Theory
	6.4 Methodological Implications
	6.5 Limitations and Future Work

	7 Conclusion
	References
	Abstract
	1 Introduction
	2 Research Questions
	3 Background
	4 Methodology
	4.1 Participants

	5 Results
	5.1 RQ1: Experience of Anxiety or Stress in Social Situations
	5.2 RQ1: Most Anxiety-Provoking Situations
	5.3 RQ2: Preference for Type of Agent
	5.4 RQ3: Preferred Activities for Managing Anxiety
	5.5 RQ4: Important Characteristics for an Intelligent Agent
	5.6 RQ4: Important Factors Motivating the Use of Agents:
	5.7 RQ5: Preferences for Data Collection

	6 Discussion
	7 Limitations and Future work
	8 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Related Work
	2.1 Definitions of Social Bots
	2.2 Social Bot Detection
	2.3 User-Bot Interaction

	3 Methodology
	3.1 Study Design
	3.2 Analysis
	3.3 Participants
	3.4 Limitations

	4 Results
	4.1 Mental Models
	4.2 Users' Ability to Detect Bots
	4.3 Perceptions of Bot Prevalence
	4.4 Additional Validation

	5 Discussion
	5.1 User Education
	5.2 Systems and Tools

	6 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Participants
	3.2 Space Invaders Game
	3.3 Study Design
	3.4 Procedure
	3.5 Dependent Measures
	3.6 Implementation Details

	4 Results
	4.1 Perceptions of Helpfulness by Agent Behavior and Identity
	4.2 Helpfulness and Other Agent Attributes
	4.3 Participant Reciprocity
	4.4 Other Findings

	5 Discussion
	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Dialogue Experiment
	2.1 Purpose and Hypothesis
	2.2 the Complexity of Repetitive Utterances
	2.3 Experiment Overview
	2.4 Subject Characteristic Scale
	2.5 Automatic Generation of Repetitive Utterances
	2.6 Dialogue Robot
	2.7 Evaluation

	3 Results
	3.1 Test for Difference Between Complexity Conditions
	3.2 Correlation between subject characteristics and evaluation values

	4 discussion
	5 Conclusion and future work
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Methods
	2.1 Design and Procedure
	2.2 Participants
	2.3 Stimuli
	2.4 Measurements

	3 Results
	3.1 Pilot
	3.2 Manipulation checks
	3.3 Randomization
	3.4 Analysis

	4 Discussion and Conclusions
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Theoretical Background
	3 Related Work with IVAs
	3.1 IVAs with Regional Language Variations
	3.2 IVAs with Non-Native Speech
	3.3 Conclusion and Contribution of this Study

	4 User Study: Evaluation of an IVA with Non-Native Accents in English
	4.1 Stimuli Generation
	4.2 Study Design and Procedure
	4.3 Participants
	4.4 Measures
	4.5 Results
	4.6 Discussion
	4.7 Recommendations for IVAs with Non-Native Speech

	5 Conclusion and Future Work
	References
	Abstract
	1 Introduction
	2 Related Work
	3 Pre-Study
	3.1 Method
	3.2 Results
	3.3 Discussion

	4 Main Study
	4.1 Method
	4.2 Results
	4.3 Discussion

	5 General Discussion
	6 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Background
	2.1 Learning from human teachers
	2.2 Adversarial learning
	2.3 Curriculum Learning

	3 Research Questions
	4 Experiment
	4.1 Task Design
	4.2 Procedure
	4.3 Participants
	4.4 Questionnaire

	5 Results & Discussion
	5.1 In-Task Agent Performance
	5.2 Post-Task Agent Performance
	5.3 Curriculum Learning
	5.4 User Perception of Agent Improvement and Performance
	5.5 User Engagement and Preference
	5.6 User Behaviour

	6 Conclusion
	Acknowledgments
	References
	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 Adaptive user interface
	2.2 Learning user-preferred operation mapping
	2.3 Remaining problem
	2.4 Reinforcement learning
	2.5 Inverse Reinforcement Learning

	3 Advantage Mapping
	3.1 Overview
	3.2 Formulation
	3.3 Scene Selection with Advantage Function
	3.4 Updating and interpreting mappings

	4 EXPERIMENTS
	4.1 Experiment Settings
	4.2 Conditions
	4.3 Measurements
	4.4 Procedure
	4.5 Participants
	4.6 Results

	5 discussion
	5.1 User operation during the learning of mappings
	5.2 Limitations

	6 CONCLUSION
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Interaction Interfaces
	2.2 Design Approaches in HRI
	2.3 Inductive Formulation of Design Principles

	3 Design Case Study
	4 Robotic Interface Decision Support 
	4.1 Users
	4.2 Robot
	4.3 Environment
	4.4 Task
	4.5 The Proposed Service

	5 Evaluating the framework
	5.1 HRI in academia and industry
	5.2 A Valuable Tool
	5.3 Refining the framework

	6 Discussion
	7 Conclusion 
	References
	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection and Analysis
	4 Model Implementation
	4.1 Training data
	4.2 Model architecture
	4.3 Labeling and features
	4.4 Model performance
	4.5 Backchannel generation

	5 Subjective Evaluation
	5.1 Sample generation
	5.2 Procedure

	6 Experiment Results and Analysis
	6.1 Individual backchannel appropriateness
	6.2 Empathy and understanding
	6.3 Odds ratio analysis

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Related work
	2.1 Trust and factors affecting trust in robots
	2.2 Trust transfer across settings 
	2.3 Culture and trust

	3 Study Design
	3.1 Task
	3.2 Participants
	3.3 Procedure
	3.4 Measurements

	4 Results
	4.1 Quantitative findings
	4.2 Qualitative findings

	5 Discussion
	6 Conclusions, limitations and future work
	References
	Abstract
	1 Introduction
	2 Related studies
	2.1 Methods for measuring empathy tendency
	2.2 Experimental tasks to examine emotions in interpersonal situations
	2.3 Factors leading empathic helping behavior
	2.4 Aim of study

	3 Method
	3.1 Task
	3.2 Experimental design
	3.3 Procedure
	3.4 Participants

	4 Results
	4.1 Comparison of Ag1/Ag2 for each condition
	4.2 Awareness of difference in inequitable task
	4.3 Relationship between awareness of difference and empathetic tendencies

	5 Discussion and conclusion
	5.1 Summary
	5.2 Relation to previous inverted cyberball study
	5.3 Limitations and future work

	References
	Abstract
	1 Introduction
	2 Related Research
	2.1 Implicit Instrucions in Popular Culture
	2.2 Motion as an Operation Method

	3 Development of a Virtual Reality Environment
	3.1 Task Requirements and Description
	3.2 Configuration of Measurement System in Real Environment
	3.3 Virtual Reality Environment Configuration

	4 Evaluation of Individual Behaviour During Mochi Making
	4.1 Experiment Outline
	4.2 Experiment Results
	4.3 Task Approach Differences
	4.4 Identification of Implicit Signals
	4.5 Periodic Response of the Pestle and Kneading

	5 Application to Human-Robot Collaborative Work
	5.1 Experiment Outline
	5.2 Experiments Results
	5.3 Work Performance

	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	Abstract
	1 BACKGROUND
	1.1 Ingroup Favoritism
	1.2 Utilitarianism
	1.3 Moral Imperative Towards Human Versus Robot
	1.4 Current Study
	1.5 Favoritism Hypothesis: Likeliness to Inflict Discomfort
	1.6 Hypotheses on Anthropomorphism

	2 METHOD
	2.1 Design
	2.2 Participants
	2.3 Procedure
	2.4 Quiz Task

	3 MEASURES
	3.1 Assigning Extra Task
	3.2 Qualitative Measure
	3.3 Anthropomorphism.
	3.4 Manipulation Check

	4 RESULTS
	4.1 Manipulation Check

	5 ANTHROPOMORPHISM
	5.1 Human Nature
	5.2 Uniquely Human
	5.3 Qualitative Data

	6 DISCUSSION
	6.1 Group Effects in HRI Supported
	6.2 Utilitarianism Failed to Outweigh Ingroup Favoritism
	6.3 Limitations and Future Directions

	References
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Research Questions and Hypotheses

	3 Method
	3.1 Development and validation of agent stimuli
	3.2 Experiment
	3.3 Measures

	4 Results
	4.1 Data cleaning
	4.2 Internal consistencies
	4.3 Manipulation check
	4.4 Descriptives
	4.5 Analyses of dependent measures

	5 Discussion
	6 Conclusion
	References
	Abstract
	1 Introduction
	2 Experimental method
	2.1 Recording of presentation motions
	2.2 Observation of presentation motions
	2.3 Modification of the presentation motions
	2.4 Evaluation of presentation motions

	3 Results
	3.1 Progress of the sense of self-individuality
	3.2 Evaluation of past self-behavior
	3.3 Relation between the intensity of motion modification and the change in the sense of self-individuality
	3.4 Comparison of self-modification and modification by others

	4 Discussion
	4.1 Effect of speed and exaggeration coefficients
	4.2 Relation between intensity of motion modification and the change in the sense of self-individuality
	4.3 Limitations

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	A Appendix
	References
	Abstract
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 Service Robots
	2.2 Shared Attention (Joint Attention)
	2.3 Social Presence

	3 EXPERIMENTAL DESIGN
	3.1 Hypotheses
	3.2 Conditions
	3.3 Experimental Setting

	4 RESULT AND DISCUSSION
	4.1 Content of the Robot's Statement
	4.2 Timing of Robot's Statement Regarding Visitor's Gaze

	5 CONCLUSION
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Related Work
	2.1 Gestures Explaining Scenes
	2.2 Texts Explaining Scenes
	2.3 Problem Setting

	3 Case Study
	3.1 Overview
	3.2 Procedure
	3.3 Results and Analysis

	4 VISTURE: System for Speech and Gesture Generation Based on Video
	4.1 System Structure
	4.2 Video Feature Extraction Function
	4.3 Information Selection Function
	4.4 Behavior Generation Function
	4.5 Robot

	5 Experiments
	5.1 Conditions
	5.2 Procedure
	5.3 Measurements
	5.4 Expected Results
	5.5 Participants

	6 Results
	7 Discussion
	7.1 Implications
	7.2 Effects of Events and Background Descriptions
	7.3 Limitations

	8 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	1.1 Data-Driven Virtual Signing Avatars
	1.2 Evaluation of Signing Avatars

	2 Avatar Design
	2.1 Data-driven Avatar (Avatar 1)
	2.2 Manually Animated Avatar (Avatar 2)
	2.3 Human Signer

	3 User Study
	3.1 Participants
	3.2 Sentences in SL
	3.3 Procedure
	3.4 Measurements

	4 Results
	4.1 Translation Accuracy
	4.2 Godspeed Questionnaire
	4.3 Perception as a SL Interpreter
	4.4 Sorting tasks

	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Related Works
	2.1 Emotional Expression Design for Robot
	2.2 Studies on Emotion and Mood in Human Relationship

	3 Method
	3.1 Implementation
	3.2 Validation
	3.3 Experimental Setup

	4 Result
	4.1 Arousal
	4.2 Valence
	4.3 Summary of Results

	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	Abstract
	1 INTRODUCTION
	2 EXPERIMENT I
	2.1 Visual stimuli and conditions
	2.2 Measurement
	2.3 Procedure
	2.4 Participants
	2.5 Questionnaire results for Experiment I
	2.6 Discussion for Experiment I

	3 EXPERIMENT II
	3.1 Hypotheses
	3.2 Visual stimuli and conditions
	3.3 Measurement
	3.4 Procedure
	3.5 Participants
	3.6 Questionnaire results for Experiment II
	3.7 Discussion for Experiment II

	4 GENERAL DISCUSSION
	5 CONCLUSION
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Related Work
	3 Scenario
	3.1 Agent Model

	4 Experimental Study
	4.1 Participants
	4.2 Materials
	4.3 Design and Procedure
	4.4 Results
	4.5 Discussion

	5 Conclusion
	Acknowledgments
	References
	A Questionnaire
	Abstract
	1 introduction
	2 Background
	2.1 Theory
	2.2 Gesture in Virtual Agents
	2.3 The Current Work

	3 Implementation
	3.1 Utterance Meaning Analysis
	3.2 Motion Analysis
	3.3 Comparing Gesture Motion

	4 Results
	4.1 (Q1) Exploring the Relationships Between Metaphor and Motion
	4.2 (Q2) Hand Shape and Wrist Path Changes
	4.3 (Q3) Insights About Specific Speakers

	5 Discussion
	5.1 Limitations
	5.2 Applications

	6 Conclusion
	References
	Abstract
	1 Introduction
	2 Experiment
	2.1 Video stimulus
	2.2 Participants
	2.3 Procedure
	2.4 Results

	3 Discussion
	4 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Procedure

	3 Results and Discussion
	4 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Methods
	3 Preliminary Results
	4 Discussion
	Acknowledgments
	References
	Abstract
	1 INTRODUCTION
	2 METHOD
	3 RESULTS
	4 DISCUSSION
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Method
	2.1 Furhat Robot
	2.2 Participants
	2.3 Procedure

	3 Results
	4 Discussion and Conclusion
	References
	Abstract
	References
	Abstract
	1 Introduction
	2 Implementation
	3 Musical Direction
	4 Discussion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Architecture
	3 Challenges and future works
	4 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Methods
	3 Result
	3.1 Task execution time
	3.2 Evaluation of Robots with Godspeed
	3.3 Analysis of Questionnaire

	4 Conclusion
	References
	Abstract
	1 Introduction
	2 Background
	2.1 Research Question

	3 Method
	3.1 Towards a theoretical framework for a post-anthropocentric lens in HAI
	3.2 Prototyping

	4 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Background
	3 Aim
	4 Method & Development
	4.1 Current & Future Development

	5 Discussion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Implementation
	2.1 Random Process
	2.2 Q-Learning

	3 Evaluation
	4 Discussion and Conclusion
	References
	Abstract
	1 INTRODUCTION
	2 RESEARCH QUESTIONS
	3 CONCEPTUALISING A NEW PRODUCT
	3.1 Study Design
	3.2 User of the new sensory product
	3.3 Measurement and Variable
	3.4 Pain Bandage in experiment three

	4 CONTRIBUTION
	Acknowledgments
	References
	Abstract
	1 INTRODUCTION
	2 EXPERIMENT
	3 RESULTS
	4 DISCUSSION AND FUTURE DIRECTIONS
	5 CONCLUSION
	Acknowledgments
	References
	Abstract
	1 Background
	2 Evaluation Experiment
	2.1 Experiment method
	2.2 Results
	2.3 Consideration

	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Avatar work by people with disabilities
	3 Peddling using avatar robot
	4 Evaluation of mobile sales-type avatar work
	4.1 Experimental Procedure
	4.2 Results

	5 CONCLUSIONS
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Three-condition comparison experiment using VR space
	3 Conclusion
	References
	Abstract
	1 Introduction
	2 Methods
	2.1 Measurements

	3 Results
	4 Conclusions
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Perception Study
	2.1 Stimuli Generation
	2.2 Method
	2.3 Results

	3 Conclusion
	References
	Abstract
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Materials and Task
	2.3 Procedure
	2.4 Measures and Design

	3 Results and Discussion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Hype Dlive
	2.1 System Overview
	2.2 System Architecture
	2.3 Acceleration Control Function
	2.4 Moshing Function

	3 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Method
	3 Preliminary Findings
	3.1 Participant Feedback
	3.2 Wizard Feedback
	3.3 Technical Considerations

	4 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Experiment
	2.1 Experimental design and participants
	2.2 Procedure

	3 Results
	3.1 Accuracy rate
	3.2 Trust rating

	4 Discussion and conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Methods
	2.1 Population
	2.2 Empathy questionnaire
	2.3 Matching Pennies Game
	2.4 Anthropomorphism and predictability
	2.5 Data analyses

	3 Results
	4 Discussion
	5 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Related Works
	3 Design
	3.1 Basket Model Design
	3.2 Gamification

	4 Preliminary User Testing
	5 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Experiment
	2.1 Method
	2.2 Results
	2.3 Discussion

	3 Concluding remarks
	Acknowledgments
	References
	A Control questions used in the experiment
	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	4 Results and Discussion
	5 Conclusion
	References
	Abstract
	1 Introduction
	2 Social robotics mirroring humans
	2.1 From anthropomorphisation to (potential) manipulation

	3 Human Dignity: balancing principle
	4 Conclusions and future works
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Multi-player decisions
	3 Conclusions
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Method
	2.1 Task Environment
	2.2 Experiment

	3 Results and Discussion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Immersive Experience
	3 Volumetric Capture Technology
	4 Audience Feedback
	References
	Abstract
	1 Introduction
	2 Background and Motivations
	3 The General Architecture Proposed
	3.1 The Interaction Protocol 

	4 Implementation
	5 Discussion
	6 Conclusion and Future Works
	Acknowledgments
	References

	hai2022_BM



