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Q-Mapping: Learning User-Preferred Operation
Mappings with Operation-Action Value Function

Riki Satogata, Mitsuhiko Kimoto, Yosuke Fukuchi, Kohei Okuoka, and Michita Imai

Abstract—User interfaces have been designed to fit typical
users and their usage styles as assumed by designers. However, it
is impossible to cover all the possible use cases. To address this
problem, we propose Q-Mapping, which is a method for user
interfaces to acquire the operation mapping, or mapping from
user operations to their effects. Q-Mapping has an advantage
over previous techniques in that it can acquire operation mapping
interactively. The core idea of Q-Mapping is that what a user
selects as an ideal action has a tendency to be the same as the
action which has the highest Q value. On the basis of this concept,
we defined the operation-action value function, which can be
calculated from the value that a user expects to gain when a
particular mapping is given in that state and is updated each
time an operation occurs. We conducted a simulation experiment
and a user study to investigate the Q-Mapping performance and
the effects of the acquisition of interactive operation mapping.
The simulation results showed that the changeability of operation
mapping could be controlled by a coefficient called the balancing
parameter. As for the user study, we found that Q-Mapping with
a balancing parameter that decays with time was able to acquire
operation mapping that was easy for users to understand. These
results demonstrate the importance of balancing consistency and
adaptability in the interactive acquisition of operation mapping.

Index Terms—Human-device Interaction, Human-computer
interface, Q-learning

I. INTRODUCTION

WHEN humans encounter a device for the first time,
how do they know how to operate it? Typically, we

acquire operation methods by reading a manual or imagining
what to do, and over time we become accustomed to the
operation through actual use. To enable users to operate
devices smoothly, interfaces are carefully designed to facilitate
intuitive operations. However, sometimes the design does not
suit certain users. For example, some large-handed users may
find a better way to operate, and physically challenged people
may find it difficult to operate the default design [1]. A typical
solution is to change system settings such as “key assignment”
and manually define an operation mapping between an oper-
ation and its effect, but this is often inconvenient for general
users. In some cases, key assignment alone is not enough.
For example, if a person with a movement disorder wants to
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operate, he/she needs to consider a completely new opera-
tion method. Jeebithashre et al. [2] have developed a gaze-
based pointing device for people with movement disorders.
Furthermore, even if a new operation method is adopted, the
appropriate operation may change depending on the type and
the degree of the disability and on personal preference [3].

If a system can adapt to users and provide user-preferred
operation, it will lead to a significant improvement in usability.
Previous studies have proposed various systems to learn user-
favorite operations [4], [5]. While these systems are based on
novel ideas that do not require careful design of operation
mapping, the user needs to take additional steps to train the
system before starting operation.

In this paper, we propose Q-Mapping, a new method for
acquiring operation mappings. Q-Mapping can build operation
mappings without prior beliefs about how a user operates a
device, so it can be adaptively fit to each user. In addition,
Q-Mapping acquires operation mappings interactively, so no
additional explicit training process is required. In Q-Mapping,
we define a “operation-action value function” that can be
calculated from the action value function—Q value—in Q-
learning [6]. Q-Mapping updates the operation-action value
function when receiving user operations and uses it for opera-
tion mapping. Q-Mapping is similar to Inverse Reinforcement
Learning (IRL) in that it uses the results of Reinforcement
Learning (RL), but the two have different purposes: IRL
estimates the intent of an expert, while Q-Mapping estimates
the intent of each user.

The main contributions of this paper are as follows:

• We have shown that we can create an intelligent controller
that personalizes the operation method by adapting a sim-
ple internal model based on the value of user operation.

• We test the hypothesis that user operations change from
the exploration phase to the exploitation phase with such
intelligent controllers and provide a guideline for building
them.

In section II, we introduce related work that has tackled
the inflexible nature of conventional interfaces and ways to
improve their usability. In section III, we explain the proposed
approach. In section IV, we introduce the task used for the
two experiments conducted in this study, and we describe the
method and results of the simulation experiment in section V
and of the user study in section VI. In section VII, we discuss
the results obtained from the two experiments and compare
them with related studies. After discussing the limitations in
section VIII, we conclude in section IX with a brief summary
and mention of future work.

The final authenticated version is available online at: https://doi.org/10.1109/THMS.2022.3207372
This is a preprint of an article published in IEEE Transactions on Human-Machine Systems.



2

II. RELATED WORK

A. Conventional interface design

Typical interfaces are designed based on strong assump-
tions about the usage situation and user characteristics. For
example, the layout of the Dvorak Simplified Keyboard [7]
is designed to make fingering more efficient when entering
English text. However, with such interfaces, there is always a
potential risk that users will find it difficult to actually use the
device.

There are two main reasons such interfaces may be difficult
to use. The first is the “fitting limit”. Due to individual differ-
ences in the psychological measure of ease of use or physical
characteristics, there is a limit to the number of users who can
be satisfied with a single interface. For example, an interface
designed on the basis of average hand size may be difficult
for people with large / small hands to use. Furthermore, no
matter how carefully the interface is tested, there still may be
users who cannot operate it due to physical constraints. For
example, a user with a handicapped finger may have difficulty
using the keyboard. Such a user would have to find some other
input method.

Studies on the control by motion [8], [9] or gaze [10], [11]
have made more intuitive operations possible by utilizing the
analogy of the physical world. These studies have provided
options other than general-purpose input devices such as key-
boards and mice. By increasing the choices of new interfaces,
users can choose the interface that suits them best, and the
problem of “fitting limit” can be alleviated. For example, it
will be possible for people with movement disorders to use
their eyes to operate devices that they could not before [2], [3].
However, these new operation methods are also designed on
the basis of specific ideas, which leads to the second problem.

The second problem is “collapse of premise”. This problem
arises when the interface is used in a situation that is different
from the use case envisioned at design time. For example,
users who want to play a game on the keyboard will put their
hands in a position different from the general home position.
There are many cases like this, where individuals will want
to use an interface differently than the general purpose. The
problem of “collapse of premise” also includes the situation
where the user models assumed by designers do not match
the actual users. For example, an interface made for experts
is difficult for beginners to use.

B. Personalized mapping

One of the solutions for these problems is to personalize
the operation method. For example, “key assignment” is a
personalization approach that provides a function for the user
to change the operation mapping by him/herself. However,
users do not always know which mapping is best for them,
so trial and error is required. As this is a time-consuming
process, many users simply give up and get used to the default
mapping. This problem can be solved with the approach that
helps users become accustomed to operation mapping [12],
but systems with personalized mapping can be easier to use.
Emacs Key Binding Recommender System (EKBRS) [13]
is a system that recommends appropriate key assignments

for specific software. The system scores key assignments in
accordance with various rules (for example, using the key of
the first letter of the word representing the function) and makes
recommendations on the basis of the score. The advantage
of EKBRS is that the system takes the initiative in adjusting
the operation method, rather than leaving it to the user.
However, evaluation rules for the recommendations are highly
dependent on the expectations of the designers. In order to
avoid “collapse of premise”, it is necessary to design as few
of these rules as possible.

Other research has personalized the operation mapping on
the basis of the data acquired from the user in advance without
designing the operation method in advance. Niwa et al. [4]
showed the action of a humanoid robot to users in advance and
had them predict the corresponding operation. By performing
pattern matching based on the result of this prior process,
they could obtain the operation mapping expected by users.
Li et al. [5] also proposed a method for acquiring mapping
for robot arms using a similar procedure. The advantage of
these techniques is that the system learns operation mapping,
which reduces the design assumptions. However, a problem is
that additional processes are required to obtain the operation
mapping. For example, in the system by Niwa et al., the
user needs to perform 540 unresponsive operations while
watching a robot that moves automatically. Users may find
it inconvenient to undergo such a process before actually
performing the operation.

Koyama et al. [14] proposed an efficient method to
find appropriate parameters that provide a preferable design.
Although the small number of iterations that their method
performs is also helpful for the domain of online design, their
idea cannot fit the domain of online operation mapping without
modification. Specifically, the proposed design parameters are
not appropriate for the type of user input utilized in online
operation mapping. What the user needs to do should be very
simple: that is, they should only have to input direct control
operations for the agent. Requiring users to adjust to indirect
design parameters prevents them from selecting the preferable
operation intuitively. It is essential to focus the user’s attention
on controlling the agent while eliminating indirect input.

C. Interactive personalization

Research on personalization based on user models is being
actively conducted. Dai et al. [15] proposed a POMDP-based
adaptive workflow in crowdsourcing and provided worker-
specific tasks. Sguerra et al. [16] proposed adapting the UI to
reduce cognitive load by modeling human working memory.
Some studies have dynamically personalized the interface
during user operations. Examples include Adaptive Interface,
or Intelligent User Interface (IUI), particularly for use with
GUI [17]–[19]. Todi et al. [20] proposed an adaptive UI that
can perform tasks quickly by using reinforcement learning.
These provide a more optimal UI based on user operation.
Torok et al. [21] developed a controller that interactively
changes the position and the size of buttons on the touch
interface. In this system, relocation is performed on the basis
of the user’s operation history so that erroneous operations

The final authenticated version is available online at: https://doi.org/10.1109/THMS.2022.3207372
This is a preprint of an article published in IEEE Transactions on Human-Machine Systems.



3

are reduced. Pelegrino et al. [22] adjusted button positions
and added / removed buttons in accordance with in-game
context. These approaches solve the “fitting limit” problem
by implementing the design process while the user is actually
playing. However, they are only used for UI adjustments and
do not address the response to user input.

Another research direction has focused on changing the
operation interactively through operation assistance by Shared
Control (SC). SC is a research field that aims to support the
human operations of a machine with a system’s intervention.
In SC, a human and a system share the control of a machine.
Of particular interest here is that an SC system can receive
human input and modify its effect, which can be regarded
as changing an operation mapping. For example, in research
dealing with upper limb assistive devices [23], [24], if the
user performs an operation that deviates from the target, the
system encourages the user to return to the appropriate route
by increasing the operation resistance. The walking support
robot developed by Garrotte et al. [25] performes Q-learning
while accepting user operations and then converts these into
operations that prevent it from hitting obstacles. In studies on
semi-automatic driving [26], [27], the system calculates the
steering for the ideal state separately from the user operation,
and the action is then selected on the basis of both. Focusing
on the scrolling operation of a tablet, Fukuchi et al. [28]
transformed the normal scrolling operation of the user into an
intelligent operation that skips any screen the user does not
want to see and stops at the one he or she does. The common
problem with the SC approaches mentioned so far is that they
only deal with short-term goals, which are specifically pre-
defined depending on the particular situation. In rehabilitation
or semi-automatic driving, obstacles to avoid are relatively
easy to define but when it comes to acquiring operation
mapping, pre-defining a short-term goal is likely to cause a
“collapse of premise” because short-term goals tend to be
highly domain-dependent. We feel it is imperative to acquire
operation mapping with as few goals as possible and to make
sure they are long-term.

D. Value estimation
What a user intends to do with an operation is strongly

connected to his/her goals or values. Various works have
focused on estimating values or goals computationally on the
basis of user behavior, and our work utilizes the results of such
studies to acquire an operation mapping. Inverse reinforcement
learning (IRL) [29]–[31], which deals the value estimation
problem by structuring it into Markov decision processes, is
one such study. IRL has mainly been utilized in the field of
imitation learning, which involves the learning and imitating
of operations by human experts. Bayesian optimization is
also used for value estimation. Andrew et al. [32] aimed to
achieve a personalized programming tool by estimating the
user’s skill using Bayesian inference in block programming.
We argue that the value estimation method as described above
is also useful for acquiring operation mapping. Simply, if we
can dynamically determine a user’s value from his/her actions,
user operation can be interpreted without assumptions such as
use cases.

For example, also in SC, IRL is used by the system to
estimate the goal from the user’s operation [33]. Reddy et
al. [34] applied the value estimated by reinforcement learning
to operations by adjusting the operation mapping through pre-
training and increased the achievement rate of difficult tasks.
To do this, they developed a method to calculate the dynamics
of user operation by using the value (Q value) obtained by
RL. In this way, various studies have explored estimating
the operation target, but virtually all of them focused on
adjusting operation mappings from default ones, which can
cause “collapse of premise”. No research has targeted the
problem of acquiring operation mappings interactively in a
phase where even default mappings have not been defined.

III. LEARNING USER-PREFERRED OPERATION MAPPINGS

In this work, we propose Q-Mapping, a method for inter-
actively acquiring the operation mapping without defining the
default one.

A. Formulation

We formulate the user operation process of a system as a
Markov decision process (MDP), which is represented as a
tuple (S, A, T , R). Let st ∈ S be the state of the system at
step t, which is a value that is incremented each time the state
s changes.. In addition, to consider the process of transitioning
the system state from st to the next state st+1, the system’s
internal trigger with regard to the system state transition is set
to the variable a ∈ A, and also called action. The trigger a is
assumed to make a deterministic transition of the state of the
system. Under this assumption, the transition can be expressed
with transition function T as:

st+1 = T (st, a). (1)

The user selects st+1 on the basis of the reward r ∈ R, which
means that the user intends to achieve a final goal through the
selected state. We define the inverse function of the transition
function T that returns a trigger to achieve a specific next state
from the current state, and express it as

a = T−1(st, st+1). (2)

Incidentally, when the user operates the system, we assume he
or she first imagines the target state st+1 at the next time point
to be achieved based on the current state st. With Eq. (2),
we can consider the trigger a that corresponds to the state
transition.

Here, the user cannot directly input a trigger a to the system
because what the user input to control the system is operation
o ∈ O specified by the interface. The user has an operation
mapping M in his or her mind and uses it to select o.
Note that for the sake of simplicity, we assume a one-to-one
correspondence between operation o and action a is assumed.
In reality, user operations and intended actions may not be
one-to-one, as discussed later in the section VIII.

o = M(a) (3)
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The goal of this work is to estimate which trigger a the user’s
operation o assumed when performing the operation. Namely,
the problem is finding the inverse function of M:

a = M−1(o). (4)

In reinforcement learning, an agent’s policy, or how an agent
behaves, is learned while obtaining information from the
interaction with the environment on the basis of the MDP
settings. In Q-learning [6], which is a method of reinforcement
learning, a function that takes a combination of state s and
action a is utilized as an argument and returns the expected
value of the sum of rewards obtained under a specific policy
π called an action value function. It is expressed as

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt+1|s0 = s, a0 = a

]
. (5)

In order to calculate this expected value, we need to calculate
the next states, but this is generally difficult. In Q-learning,
the Q value is updated while checking the state of the result
of the actual action.

Qπ (st, at)← (1−α)Q (st, at)+α
[
rt+1+γmax

a
Q (st+1, a)

]
(6)

Here, α is the learning rate and γ is the discount rate. That
is, the Q value for a certain policy is approached to the Q value
for a policy that is maximized in the next state by the learning
rate α. This propagates its value to the policy that can reach
a state where more rewards can be obtained. By repeating a
large number of trials, the Q value of each policy converges so
that the more effective the policy is for the purpose of the task,
the higher the Q value. As a result, it is possible to take the
best action to achieve the goal by always selecting the action
so that the Q value is maximized. In this study, we apply the
Q function-like concept to users, and assume that they select
the action based on it.

B. Q-Mapping

Q-Mapping utilizes a Q function-like concept to obtain the
mapping between actions and operations. If Q-Mapping can
retrieve the user’s action evaluation for navigating the agent
using a certain operation, the mapping is estimated by a new
function QM−1

proposed in Eq. (7).

QM−1

(o, a) = EM−1 [Qπ
u(st, a)|o0 = o] . (7)

Equation (7) expresses that the appropriateness of the combi-
nation between actions and the user’s operation o is related to
the user’s action evaluation Qπ

u when the user imagines making
the agent achieve a goal while performing the operation o.
The right side of Eq. (7) allows the user not to have an
explicit mapping in his/her mind because there is no direct
connection between the action value and the operation. The
loose coupling between the action and the operation covers a
situation where the user knows what an appropriate action is
even though he/she does not know what operation can trigger
it. Such cases often appear in the early stages of adaptation.
The consensus of the mapping emerges when the user repeats

Q-Mapping

System

Mapping

State-Action
value function

Operation-Action
value function

State-Action
evaluation

User

s s

a a

o

a

Fig. 1. Overview of Q-Mapping. The left side shows the user ’s cognitive
model, and the right side is the Q-Mapping system. According to the
assumption that humans also select their actions on the basis of a function
similar to the action value function, the operation mapping is inferred from
the user operation by using the “operation-action value function”.

the trial of operating and the agent behaves according to the
highest value of Qπ

u. Suppose the system can obtain the user’s
evaluation of actions. In that case, it can acquire the mapping
by storing the values of the user’s action evaluations as the
values of the combination between the user’s operation and
the action the user wants to choose.

However, the system cannot obtain the evaluation Qπ
u of

the actions from the user directly. Instead of Eq. (7), we utilize
Eq. (8) to avoid this difficulty.

∀a,QM−1

(ot, a)← (1− β)QM−1

(ot, a) + βQπ (st, a) (8)

The idea of Eq. (8) is to use the Q value obtained in Q-
learning. We expect the user’s evaluation Qπ

u of actions to
be similar to the Q value if the task offers an optimal policy
that the user can find intuitively (see also Fig. 1). That is,
the appropriateness of actions that the user considers and the
Q value in Q-learning have a similar trend, and Eq. (8) deals
with them as the same. Also, we believe that a simple task has
the advantage of offering an intuitive policy, and the user can
easily find it. As long as the user and the system obey a similar
policy related to a task, a consensus of the mapping between
the user and the system emerges throughout the iteration of
Eq. (8).

We refer to this function QM−1

as the operation-action
value function in relation to the action value function Qπ .
Therefore, QM−1

is updated iteratively for all actions regard-
less of which action is the target of a performed operation. The
point is that the update of Eq. (8) is done on all actions defined
in the task every time. For example, imagine the beginning of
the adaptation where Q-Mapping has not yet acquired an exact
mapping. If the user selects an operation x for intending to
move an agent upwards and the task has four types of actions
(up, down, left, right), the agent moves according to the highest
Qπ in the current state. Here, suppose that the agent moves
upwards in accordance with the similarity of the user’s action
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evaluation and the Q value. Equation (8) updates not only the
value of QM−1

between the operation x and the upward action
but also between x and the rest of the three actions. Since the
values of Qπ for each action in each state are different, the
update gives different values to each pair. We can expect the
user to select the other operation y for intending to achieve
an additional action: left movement. The operation y will face
another balance of Qπ for each action; Qπ for moving left has
a higher value than the others. The different balance assigns
the other action to the operation y. The process is the one
that Eq. (8) offers to produce the mapping between operations
and actions. The iteration of Eq. (8) gives each operation a
different balance of values related to actions. The agent obeys
the user’s operation by selecting an action from four actions by
referring to the highest value from the performed operation’s
value balance.

In addition, β in Eq. (8) is a weighting coefficient that plays
a role similar to the learning rate in Q-learning. In Q-Mapping,
it is called a balancing parameter because it has a role to
balance the action value function and the operation-action
value function. Using the operation-action value function
QM−1

defined above, the system uses the following formula
to select the action a to output from operation o.

M−1(o) = arg max
a

QM−1

(o, a). (9)

For the sake of simplicity, in this study, we assumed a one-to-
one correspondence between operation o and action a and used
argmax. Since QM−1

of each operation holds the operation-
action values of all actions updated by Eq. (8), Q-Mapping can
choose an appropriate action by finding the QM−1

that has the
highest value regarding the operation the user performed.

The balancing parameter is important because it determines
how well Q-Mapping adapts to the user. We decided to
define this parameter with reference to the characteristics of
human manipulation. When humans perform operations using
a controller, they initially perform exploratory operations with
an awareness of the operation mapping between operations
and actions, but as they get used to it, the operations become
habitual and they concentrate only on the actions [35]. Biswas
et al. explained that when the user does not know the operation
method, the sub-optimal operation is performed, and when the
user does know the operation method, the optimum operation
is performed [36]. On the basis of the above insights, we
expect the following hypothesis to hold even in a system
that adapts to human operations without designing operation
mapping, such as Q-Mapping: they operate in an exploratory
manner at first, but gradually exploit the acquired operation
method. Therefore, we presume it is better to converge the
balancing parameters so that the user’s operations converge
to his or her preference. For this reason, we designed the
balancing parameter β to be large to adapt well at the
beginning and to decrease as the steps progress:

β(t) =
1

2

(
1− 1

1 + e−k(t−t0)

)
. (10)

The second term of Eq. (10) represents a logistic curve for
t, which draws a flipped s-shaped curve. Here, k represents

0 2 4 6 8 10
Step

0.0

0.1

0.2

0.3

0.4

0.5

Be
ta

Large 
Small 
Decay 

Fig. 2. A graph showing changes of beta. The three lines represent each of
the three conditions used in the experiment.

the steepness of the curve and t0 represents the midpoint of
the curve. β is a function that depends only on the time
step t. However, the update timing of β is not intuitive due
to the structure of t. The state s changes each time a user
operates, which in turn causes the incrementation of t. Thus,
β is updated every time the user operates. The Decay β legend
in Fig. 2 shows the change in β when t is changed in Eq. (10).

The balancing parameter marks a difference between Q-
Mapping and IRL. What makes Q-Mapping differ from IRL is
that it changes the dependency on the behaviors of the experts
to achieve personalization. IRL is a method of estimating
the reward for the task based on the behavior of the expert.
In contrast, Q-Mapping estimates the action related to the
individual user’s input. However, it is not always appropriate
to bring the action closer to the behavior of the expert because
the intention of each individual is not necessarily the same as
that of the expert. The balancing parameter β plays the role of
changing the dependency on the expert, who is Q value. Ac-
tions on IRL always come from the expert’s action selection.
In contrast, Q-Mapping varies the dependency according to the
balance parameter. Decreasing the dependence after obtaining
the mapping enables the user to take his/her own style of
operation.

IV. EXPERIMENT DESIGN

We conducted an experiment to evaluate whether the user-
preferred operation mapping could be obtained by Q-Mapping.
To this end, we developed an interface with which a user
solves a maze task named GridWorld (Fig. 3). GridWorld
is a standard MDP example and is often treated as a Q-
learning problem [37], [38]. We decided to use this problem
because it is simple and easy for humans to understand.
Moreover, the simple task has an advantage of easily analyzing
the characteristics of Q-Mapping. In GridWorld, a square
environment is divided into a grid, and a road (black) or a
wall (white) is arranged for each grid, making it a maze-
like task. In this experiment, we set the grid to 21 × 21 and
the controllable agent (red) and the goal (green) one by one
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(a) (b) (c) (d)

Fig. 3. Four mazes used as GridWorld problems in the simulation experiment and the user study. Gray lines in (c) and (d) are the routes used in the simulation
experiment, and orange dots are the relay points utilized in the user study. These are set for the purpose of confirming whether Q-Mapping can handle it even
if users intend to take a non-optimal route.

in the maze. The agent’s possible actions are represented by
a ∈ {up, down, left, right}, with each element representing
the agent moving one square in that direction. If there is a wall
ahead of the agent, it will not move. When the agent reaches
the green goal, the next maze is displayed. In Fig. 3, a user
solves the mazes in the order of (a), (b), (c), and (d).

Maze (a) is a simple task that can be accomplished simply
by moving up and left. We expect it will be easier to estimate
the user’s Q value in this task, which will be advantageous for
Q-Mapping. In maze (b), in addition to up and left, which was
acquired a little in maze (a), the down and right operations are
indispensable. The reason mazes (a) and (b) are so simple is
to let the users express the intention they have through the
operation. In contrast, for mazes (c) and (d), there are two
types of branch route. If the action value of Q-learning is used
as it is for guessing the user’s operation intention, it tends to
be interpreted as an operation that follows the optimum route.
We designed our experiments to verify whether Q-Mapping
can properly adapt the operation mapping even if the user
does not want to follow the optimal route.

We trained the system to learn the action value functions
in GridWorld using the Deep Q-Network (DQN) [39]. We
utilized DQN for the future extension of this research because
Q-Mapping has the potential to be applied to more complex
tasks than mazes. The reward design was +1 when the agent
reached the goal, and −0.1 for all other states. In order to get
the action value function faster and more accurately, we used
UCB-1 [40], which actively visits unsearched environments,
as an exploration algorithm. Furthermore, the learning was
repeated with all squares except the goal and the wall as the
starting position.

In this study, pressing the alphanumeric keys on the key-
board was used as the operation o. The reasons for choosing
the keyboard were that it is general and relatively easy to
prepare in online user studies, and since it has a large input
type for the number of actions in GridWorld, variations for
each participant can be expected.

The initial value of QM−1

(o, a) in the Eq. (8) is set to
0.25 so that

∑
a Q

M−1

(o, a) = 1 to make all actions have an
equivalent value. Also, for determining the rate of decaying
the value of β, we performed the task with several patterns
of k and t0 and set the values that we empirically considered

appropriate (k = 1, t0 = 5). With these values, we believe that
β asymptotes to 0 while the user is playing the second maze
and thus stabilizes the Q-Mapping.

V. SIMULATION EXPERIMENT

In the simulation experiment, we analyzed the operation
mapping acquired by Q-Mapping and particularly focused on
the effect of the balancing parameter β in the Q-Mapping
equation. Our intention here was to observe whether the
system could output the target action of the simulated user
that imitates human operation while changing β.

A. Hypotheses

We defined the balancing parameter β on the basis of
the hypothesis that users operate in an exploratory manner
at first and then gradually do what they like (Eq. (10)). In
this experiment, we expected that Q-Mapping with Eq. (10)
would work best for the simulated human that operates on
the basis of this hypothesis. We also expected that when the
balancing parameter is large, the action value function would
be prioritized and the tendency to select the optimum policy
would become stronger, while in contrast, when the balancing
parameter is small, the operation-action value function would
be prioritized and the tendency to select the action with the es-
timated operation mapping would become stronger. Therefore,
we make the following hypotheses:

H1 Q-Mapping with a large β should adapt well, so it
should work in the first half, but errors increase in the
latter half.

H2 Q-Mapping with a small β should be highly consistent,
so although there might be many errors in the first half,
it should work well in the latter half.

H3 Q-Mapping with β that decays with time (Eq. (10))
should work well with few errors throughout.

B. Conditions

To test the effect of balancing parameter β, we prepared
Q-Mapping with three different balancing parameters β and
compared them:

Large β Q-Mapping with a relatively large balancing pa-
rameter β = 0.3.
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Small β Q-Mapping with a relatively small balancing pa-
rameter β = 0.001.

Decay β Q-Mapping with decaying balancing parameter
β = β(t) (Eq. (10)).

C. Simulated user model

The user operates on the basis of operation mapping M
to execute the action a that is executable in the environment.
Here, we modeled an operation mapping M in which the user
assigns one operation to one a. For example, when a simulated
user wants to move to the left, that user sends an arbitrary
signal such as o1 under the intention of moving to the left.
The simulated user also assigns o2, o3, and o4 to each of the
other three actions. Since this study assumes a one-to-one
correspondence between operation o and action a, there are
four types of o.

We implemented a desire of the simulated user that ini-
tially performed exploratory operations and then gradually
performed consistent operations, which is based on the ex-
planation of human operation by Keogh [35]. In the first
two mazes ((a) and (b)), the simulated user performs a
random operation with a probability of ϵ and a greedy
operation(arg max

p
Qs(s, p)) with a probability of (1− ϵ). As

a simulation of getting used to it gradually, we subtracted ϵ in
increments of 0.01 for each step:

ϵ =

{
ϵ0 − 0.01t (ϵ0 > 0.01t)
0 (otherwise).

(11)

In the latter two mazes ((c) and (d)), the simulated user
operates the agent so as to follow the preset route indicated
by the gray line in Fig. 3. We set the preset route to the detour
of the two branches in mazes (c) and (d). This phase was
designed assuming free movement by the user. At this time,
the simulated user operates randomly with a probability of 5
% to reproduce the average error of human operation. If the
simulated user deviates from the preset route, it operates to
return to the route.

We assigned operation signals to the simulated user one by
one for each of the four possible actions in GridWorld.

D. Measurements

We performed 1000 trial experiments under each condition
while changing ϵ ∈ {5, 10, 15, 20}. We measured the follow-
ing values:

• the location where misinterpretation occurred during the
task, and

• the ratio of misinterpretations to all operations during the
task.

We define misinterpretation as the difference between the
output intended by the agent and the actual output of the
system. By measuring misinterpretation, we show how few
errors the system had when guessing the intent. If the mapping
adaptation fails, the system can expect to choose the most
rational action from its current state, which manifests itself
as misinterpretation. These measurements are divided into
the first two and latter two mazes for analysis. By looking at

these measurements in the first two mazes, we can see whether
the model is capable of adapting to early operations, and by
looking at the latter two, we can see whether the model was
able to perform the desired operation.

E. Results and Discussion

The heat maps in Fig. 4 show the location where mis-
interpretation occurred during the task. Figure 5 shows the
misinterpretation rate of each model in the first two mazes.
A Kruskal-Wallis test showed that the difference of β af-

fected the misinterpretation rate under all noise conditions:
H(2) = 9.13, p = .01, H(2) = 23.7, p < .001, H(2) =
25.8, p < .001, and H(2) = 73.5, p < .001, respectively. The
results of a Steel-Dwass test was used to compare all pairs
showed that the misinterpretation rate for both Large β and
Decay β was significantly lower than that for Small β. Also,
there was no significant difference between Large β and Decay
β under all noise conditions.

Figure 6 shows the misinterpretation rate of each model in
the latter two mazes. A Kruskal-Wallis test showed that the
difference of β affected the misinterpretation rate under all
noise conditions: H(2) = 2663, p < .001, H(2) = 2688, p <
.001, H(2) = 10686, p < .001, and H(2) = 2672, p < .001,
respectively. The results of a Steel-Dwass test for all noises
was used to compare all pairs showed that the misinterpretation
rate of Small β was significantly smaller than that of Large β,
and that of Decay β was significantly smaller than that of ei-
ther Large β or Small β. It is notable that the misinterpretation
rate of Decay β was 0 % under all conditions.

According to Large β in Figs. 5 and 6, hypothesis H1
is supported. This suggests that Large β works well when
the user selects an action that is close to the optimum. On
the other hand, if the route the user wants to follow is clear
and not optimal, it will not work well. This is because the
action for the operation changes frequently due to the large
balancing parameter β. This adaptive feature can sometimes
cause the user to have a non-intuitive experience. We can
also read this from the position of misinterpretation (Fig. 4).
Especially in mazes (c) and (d), more misinterpretations were
distributed throughout than in the other two conditions. Fur-
thermore, in maze (d), misinterpretations were distributed at
positions different from the preset route. In other words, when
noise operations different from the optimum piled up, the Q-
Mapping of Large β ignored the intention of the operation and
selected the optimum action.

According to Small β in Figs. 5 and 6, hypothesis H2 is
supported. We conclude that the small balancing parameter
of Small β delayed the early estimation compared to other
conditions. In contrast, the small balancing parameter also
provided stability in the latter mazes. The position of misinter-
pretation (Fig. 4) indicates there were few misinterpretations
as a whole. However, in maze (d), misinterpretations were
distributed at positions different from the preset route, as in
Large β. In other words, although it was less than Large β,
the influence of noise may accumulate and provide an action
that is different from the user’s intention. This possibility is
unavoidable as long as the balancing parameter β is a constant.

The final authenticated version is available online at: https://doi.org/10.1109/THMS.2022.3207372
This is a preprint of an article published in IEEE Transactions on Human-Machine Systems.



8

La
rg

e 
Sm

al
l 

maze (a)

De
ca

y 

maze (b) maze (c) maze (d) 0

100

200

300

400

500

Fig. 4. Heat maps showing misinterpreted positions for each model when ϵ = 0.15. The shade of color expresses the number of times from 0 to 500 (the
darkest shade indicates 500 or more).
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Fig. 5. Misinterpretation rate of each model for noise changes in first two
mazes ((a) and (b)). An asterisk (*) means p < .05 and triple asterisk (***)
means p < .001. Error bars show standard errors.

According to Decay β in Figs. 5 and 6, hypothesis H3
is supported. This result demonstrate that the advantages of
Large β and Small β can be combined by the decaying
balancing parameter (Eq (10)). Furthermore, the action is
rarely changed by the balancing parameter beta being not
a constant but gradually decaying. From the above results,
we conclude that Decay β’s Q-Mapping has the property that
the interpretation gradually becomes difficult to change, and
returns an action that is easier for the user to understand.

Finally, we discuss the commonalities between each con-
dition. In the first two mazes, the misinterpretation rate in-
creased as the noise increased under all conditions. In contrast,
the misinterpretation rate in the latter two did not seem to
be influenced by noise, or by the results in the first two.

***
***

***
***

***
***

***
***

Fig. 6. Misinterpretation rate of each model for noise changes in latter two
mazes ((c) and (d)). Triple asterisk (***) means p < .001. Error bars show
standard errors.

This indicates that Q-Mapping increases the misunderstanding
linearly with respect to noise when the operation noise is
large. Next, focusing on mazes (a) and (b) in Fig. 4, we can
see that misinterpretations occurred at similar points in all
models. In (b), misinterpretations were not widely distributed,
but rather occured often at certain positions. These locations
appear to match where the simulated user entered the first
operation in the attempt. This suggests that it is difficult to
perform the intended operation in the earliest stage when the
operation mapping acquisition is insufficient. Therefore, the
earliest environment will need to be carefully designed so that
the user’s intentions match the optimal behavior. We conclude
that it is necessary to strengthen affordance [41] during the
earliest stage of the acquisition of operation mapping.
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VI. USER STUDY

For the user study, we asked human participants to actu-
ally use Q-Mapping and evaluated its behavior. We focused
particularly on the balancing parameter and analyzed the
operation of human users by comparing the results with those
of the simulation experiments. Our idea was to determine
the appropriate adaptive controller behavior by comparing the
features of β obtained in the simulation experiment with the
results of the user study. As measures for evaluating operation
mappings acquired by Q-Mapping, we examined whether the
task was accomplished and asked the participants for their
impressions.

A. Hypotheses

In the simulation experiment, we implemented the simulated
user on the basis of the hypothesis that users operates in an
exploratory manner at first and then gradually do what they
like and found that the Q-Mapping characteristics changed
in accordance with the size of the balancing parameter. As
hypothesized, Decay β gave the best performance in the
simulation experiment. Here, we wanted to see if the same
result could be obtained for human users. In a user study, it is
difficult to confirm the intentions of all operations so as not to
interfere with the task, so we made two additional hypotheses
as follows.

H4 Participants using Q-Mapping with Decay β will have
a significantly higher task achievement rate than with
other conditions.

H5 Participants using Q-Mapping with Decay β will feel
significantly stronger that they were able to control
operations than with other conditions.

B. Conditions

To counterbalance individual differences among participants
we designed this experiment using a within-participant ap-
proach, where each user performed tasks in all conditions.
For comparison with the results of the simulation experiment,
the same three conditions were used: Large β, Small β, and,
Decay β. We then compared the results of both experiments,
to determine which features of Q-Mapping had a positive
effect on the user. The content of the task was to solve four
GridWorld mazes (from (a) to (d) in Fig. 3, introduced in
section IV) and reach the goal, but in the latter two mazes,
participants were required to pass through the relay point
indicated by the orange square in Fig. 3. This relay point
was placed at the point other than the shortest path in the
non-optimal branch that makes an action having highest Q
value inappropriate. The purpose was to measure whether the
operation desired by the user could be output, the same as the
preset route in the simulation experiment.

C. Participants

We recruited 30 participants (21 men and nine women;
average age: 41.1 years) for 165 Japanese Yen per a person
using a crowdsourcing service. All participants agreed to
provide the information obtained from the experiment. To

Fig. 7. Screen presented to participants during execution of the task. A large
maze is displayed in the center of the screen. The upper right text written in
Japanese appears as an alert message when participants press an unauthorized
key or when they reach the goal without passing through the relay point. The
box at the bottom of the maze is a button for allowing participants to give up
on a trial. If participants decide they cannot reach the goal, they can move to
the next maze by pressing it.

counterbalance the order effects, we used the Latin square
method to prepare three patterns corresponding to the order
of the three conditions and had ten participants perform each
pattern.

D. Procedure

The experimental procedure was carried out on the Web
with participants using their own PCs. All the documents
discussed below were displayed on the Web. Participants first
entered their personal information (age and gender) and then
received an explanation about GridWorld. They were then
given instruction on how to play. We instructed participants
to use all alphanumeric keys on the keyboard as controllers.
Next, we gave the following instructions: “The key mapping
is not fixed. The system guesses the interpretation based on
your operation. Try it any way you like.” The flow of the
experiment was explained as follows: “You need to solve four
mazes three times. The system that interprets your operation
method is different each time.” Participants were asked to
repeatedly solve the same maze on three different conditions
before proceeding to the task.

Figure 7 shows a screenshot of the interface during the
experiment. A large maze is displayed in the center of the
screen. Japanese texts in the boxes of the upper right and
bottom are as follows. The upper right text appears as an alert
message when participants press an unauthorized key or when
they reach the goal without passing through the relay point.
The box at the bottom of the maze is a button for allowing
participants to give up a trial. If participants decide they cannot
reach the goal, they can move to the next maze by pressing it.

After each task, participants answered a questionnaire about
the system. When they had repeated the tasks and the question-
naire three times, they were informed that all the procedures
of the experiment were completed.
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Fig. 8. Achievement count of each condition in mazes (c) and (d). Triple
asterisk (***) means p < .001. Error bars show standard errors.

E. Measurements

Two user operations were recorded as objective indicators
for later analysis: valid key inputs and pushing the button
to give up. Also, in order to determine if hypothesis H4
was supported, the percentage of tasks for which the give-
up button was not pressed was recorded. For each condition,
participants were asked to agree on a 7-point Likert scale with
the following five statements:

Q1 I was able to operate smoothly.
Q2 I was able to operate what I wanted to do.
Q3 The system guessed what I wanted to do.
Q4 I was able to grasp the operation method.
Q5 The operation method was easy to understand.

Q1 relates to how participants felt about the operation, and
the higher the points, the better the impression. Q2 and Q3
examine whether or not participants felt the system was under
their control. Particularly in Q3, we ask if participants felt
that “The system guesses the interpretation based on your
operation” was true. Q4 and Q5 are also questions about
whether participants felt they were in control of the system,
but regardless of whether the system guessed. In other words,
if Q4 and Q5 have high scores but Q2 and Q3 are low, we
can presume that the system did not be guess well; rather, the
participants adapted to the system. If all the scores from Q1
to Q5 are high, it means that the system was able to guess the
operation mapping well.

F. Results

Figure 8 shows the achievement count of the latter two
mazes, which is to reach the target via the relay point. In
the first two mazes ((a) and (b)), the achievement rate was
100 % under all conditions, so they were excluded from the
graph. A non-parametric Friedman test on differences of
achievement count was conducted and rendered a chi-square
value of 45.4 which was significant (p < .001). The results
of multiple comparisons using a Durbin-Conover procedure on
the achievement count showed that the achievement count was

*** *** ***
*** *********

***
***

***

Fig. 9. The results of 7-point Likert scale questionnaire, where 7 is the most
positive. Triple asterisk (***) means p < .001. Error bars show standard
errors.

significantly higher when using the Decay β system compared
to either Small β or Large β (p < .001). These results indicate
that Q-Mapping with the Decay β condition was the most
helpful for accomplishing the latter two mazes; that is, it could
be operated as intended. Thus, hypothesis H4 is supported.

Figure 9 shows the results of the questionnaire. A Friedman
test of differences among repeated measures was conducted for
each question. The chi-square values (with p-value) for Q1-
5 were 31.3 (p < .001), 32.0 (p < .001), 35.3 (p < .001),
22.0 (p < .001), and 30.8 (p < .001), respectively. The results
of multiple comparisons on the user rating showed that the
rating when users used the system with Large β was signifi-
cantly smaller than with the other two conditions (p < .001) in
all questions. However, for p-value, the result of the pairwise
comparisons between Small β and Decay β for Q1-5 were
0.156, 0.173, 0.199, 0.210, and 0.258, respectively. Therefore,
although the rating of Decay β was higher than that of Small
β for all the questions, there was no significant difference
between the two conditions. Thus, hypothesis H5 is partially
supported.

G. Discussion

First, we discuss the result that supported H4. The reason the
number of tasks completed was the highest under the Decay
β condition is probably that Q-Mapping with Decay β was
easy to understand. Since the operation of Q-Mapping with
Decay β rarely changed along the way, it seems that most
users understood the operation method. Results showing the
same tendency were obtained in the simulation experiment and
the user study, demonstrating the effectiveness of Decay β for
the task. Now we need to ask: did Q-Mapping with Decay β
really provide the best operation method for the users?

The questionnaire results showed there was no significant
difference between Small β and Decay β, which indicates that
although Decay β contributed significantly to the accomplish-
ment of the task, it had little effect on the user’s impression.
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Fig. 10. The number of keys used for operation by the user. The figure on
the left shows the result when participants played from mazes (a) to (d). The
right figure shows the result when participants played only (c) and (d). Error
bars show standard errors.

Let us summarize the results of the user study. Q-Mapping
was able to help users achieve their tasks by attenuating β
over step.

H. Additional analysis
Since it is possible that the equation for Decay (Eq. (10))

did not work well, we counted the types of operation in
each maze to explore the hypothesis that users operate in an
exploratory manner at first but gradually do what they like.

Figure 10 shows the mean of the number of key types
pressed in each maze. The number of key types in mazes (c)
and (d) under Small β and Decay β was reduced compared
to that under Large β (the left graph in Fig. 10). The fact
that the key variation in (a) is smaller than that in (b) simply
indicates that (a) is a simpler maze than (b) and can be cleared
with fewer operations. However, we cannot conclude that the
adaptation in mazes (a) and (b) resulted in the more efficient
acquisition of operation.

We conducted the same experiment on another 30 partic-
ipants. However, only mazes (c) and (d) were used, in that
order. The graph on the right of Fig. 10 shows the mean of
the number of key types used at that time.

First, we compared the number of key types used in the first
maze played by the user ((a) and (c)) and the second maze
played ((b) and (d)). A Kruskal-Wallis test showed that maze
(a) (H(1) = 129, p < .001) and maze (b) (H(1) = 120, p <
.001) had significantly fewer keys thanr maze (c) and (d). This
is presumably because the mazes (a) and (b) were designed to
be simpler than the mazes (c) and (d), which made it easier
for the user to search for the operation method.

Second, we compared how the number of key types in
mazes (c) and (d) changed due to the presence of mazes
(a) and (b) earlier. A Kruskal-Wallis test showed that there
were significantly fewer types of operations in both maze (c)
and maze (d) when mazes (c) (H(1) = 12.5, p < .001) and
(d) (H(1) = 23.5, p < .001) were performed later in the task.
This result demonstrates that the presence of mazes (a) and
(b) allowed the user to learn how to operate and complete the
task with fewer operations.

This additional analysis showed that users with adaptive
controllers performed exploratory operations early in the task.

VII. INTERFACE PERSONALIZATION BASED ON
Q-MAPPING

A. Cognitive Gap and Process of Personalization

The experimental results of changing the balancing pa-
rameter provide insights for interface personalization. It is
important to reduce the cognitive gap in the action value
between the user and the system to induce the adaptation
based on Q value. Changing the balancing parameter plays
a significant role in achieving a personal adaptation according
to the phase of the learning process. However, we also need to
consider the complexity of a task, which is another important
factor related to the cognitive gap and whose importance is
obscured behind changing the parameter. The system must
choose appropriate values of β according to the phase of the
learning process. For example, the system should show a high
degree of adaptability at the beginning of the task, when the
user is looking for a way to operate the system. Then, it must
become more consistent as he/she gets used to it. However, it
is not sufficient to change only the balancing parameter.

The system needs to take account of the type of task to
achieve interface personalization. In particular, the relation
between the value of the balancing parameter and the type
of the task is vital for personal adaptation in terms of the
cognitive gap. Since the Q-Mapping with the high value of
β absorbs the action-operation mapping as it observes, we
need to be aware of preparing the task type for the initial
stage to use the Q-Mapping. A complex task with multiple
goals and multiple candidates for actions causes disrupts
the adaptation because the optimal action based on Q value
does not necessarily correspond to the one the user chooses.
Since the adaptation mechanism utilized by the Q-Mapping
eliminates the state from the Q value function of the action
and binds it to the operation the user performs, the cognitive
gap between the user and the system results in producing an
inappropriate mapping, and the system adaptation tends to fail.
Therefore, we need to prepare a simple task to offer common
action values between the user and the system at the beginning
of the adaptation.

Along with the progress of the adaptation, the system
should not only decrease the value of β but also introduce
a more complex task than the one used at the initial stage.
Combining the low value of β with a complex task gives
the user opportunities to confirm the adapted controllability
on multiple goals and multiple candidates of actions on the
complex task. Therefore, the combination of the low value of
β and the complex task is crucial for the user to perceive the
consistency of the personalization.

Let us summarize the above discussion. The findings of the
experiment revealed the importance of combining the value
of β and the task complexity to achieve the personalization
based on Q value. The critical issue behind personalization is
how to reduce the cognitive gap of the action value between
the user and the system.

B. Characteristic of Q-Mapping

Here, we discuss whether Q-Mapping solves the two prob-
lems in the interface design introduced in related work. The Q-
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Mapping we have proposed can be applied to various devices,
and it will be easier to use interfaces that previously required
proper selection and adjustment [2], [3], [8]–[11]. This device-
unrestricted feature solves the “fitting limit” problem.

In addition, Q-Mapping has the feature of personalizing the
mapping based on user interaction. This feature eliminates
the need to pre-design for “general” users and alleviates the
“collapse of premise” problem. The concept of Q-Mapping,
which adapts interactively during operation, is based on the
concept of IUI [15], [17]–[20] and SC [24]–[26], [28]. Since
research on interactive adaptation in the domain of operation
methods is still ongoing, we hope that Q-Mapping will serve as
a stepping stone. Q-Mapping is similar to value estimation
methods such as IRL or Bayesian inference. In one study,
research was conducted using the operation of the expert for
training to learn the value of the operation and facilitate the
operation [34]. The problem with applying value estimation to
the personal adaptation of operations is that it takes a long time
to train [4], [5]. In contrast, Q-Mapping does not require any
training with users. Koyama et al. [14] proposed a process for
interactively identifying a user’s favorite image using Bayesian
inference, but it is difficult to apply a similar process for
a domain of operations in which the correct answer is not
immediately known.

VIII. LIMITATION

Q-Mapping can be used at the beginning of a game or
in the introduction part of an application because the goals
are clear, but it would be difficult to apply Q-Mapping to
tasks where the user cannot estimate the optimum action by
looking at the state of the environment. For example, in an
environment that is so complicated the users do not know
what kind of action is possible the first time they see it, they
do not perform an operation toward the target state directly
but rather an exploratory operation to grasp how it moves. In
other words, Q-Mapping is difficult to adapt based on a long-
term goal. One idea for Q-Mapping to handle the long-term
goals is to apply the cognitive model used by Biswas et al. [36]
to evaluate the interface for the acquisition of the operation
mapping. Such evaluation of the operation mapping will
enable Q-Mapping to acquire the mapping even throughout
goal-oriented interactions in a complicated environment.

In this paper, we empirically determined the parameters k
and t0 in Eq. (10) by conducting a trial on maze tasks (a), (b),
(c), and (d). However, it is unclear whether these parameters
are optimal for the user, as they have not been fully verified.
Since Eq. (10) has a great influence on the adaptation method
of Q-Mapping, it may be possible to obtain knowledge on
the stability of Q-Mapping by comprehensively investigating
the parameters. In addition, Q-Mapping that repeats adaptation
and forgetting may be possible (depending on the situation)
by dynamically changing the parameters as the user becomes
accustomed to the adaptive controller.

Q-Mapping targets discrete input devices (for example,
keyboard, button, or tap). In order to handle a continuous input
device such as a joystick, one of the possible solution is to
classify it into discrete values. When classifying continuous

inputs, we need to be careful not to include the designer’s
intention.

In Q-Mapping, assumptions are eliminated as much as
possible to prevent “premise collapse”, but some assumptions
inevitably remain. One of the major assumptions is that one
operation always results in one action. First, if the user has
the intention of assigning multiple operations to one action,
the current model may not be able to adapt well. In our user
study, it seemed that few users tried to operate using multiple
operations, but we feel that a design that allows multiple
operations is necessary to utilize it in various other tasks.
Second, this assumption makes it difficult for Q-Mapping to
handle cases where the user wants to interpret multiple inputs
as one action. Commands on CUI and gesture operations
are examples of operations that require multiple inputs to be
interpreted as a single action. Future work will need to address
how to handle operations that consist of multiple inputs.

IX. CONCLUSION

Under the assumption that human operation intentions and
action value functions are similar, we proposed Q-Mapping,
which infers the operation mapping by using the learned Q
values. With Q-Mapping, the system can interactively acquire
personalized operation mapping for each user. The weighting
between Q value and operation mapping can be changed by
a balancing parameter that determines the sensitivity of the
Q-Mapping response. It is a key parameter in the interaction
between humans and systems that changes the response inter-
actively.

We performed simulation experiments to analyze what kind
of interpretation change the difference in balancing parameters
brought about. We found that Q-Mapping with a large balanc-
ing parameter is better in situations where non-optimal (noisy)
operations are performed frequently, and Q-Mapping with a
smaller one is better when there are many optimal operations.

We also performed a user study and found that participants
successfully achieve the given maze tasks under Q-Mapping
with the decaying balancing parameter. On the other hand,
the design in which the balancing parameter was large in the
early stage and gradually attenuated did not affect the user
impression very much.

These results demonstrate that when users utilize a
controller that adaptively acquires operations, they perform
exploratory operations in order to determine the operation
method in the early stage, and then exploit the operation
method step by step. This conclusion will help in designing
controllers that are interactively personalized.
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